山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (3): 99-106.doi: 10.6040/j.issn.1671-7554.0.2019.1396
唐博1,2,邵静3,崔静4,孙健平1,4
TANG Bo1,2, SHAO Jing3, CUI Jing4, SUN Jianping1,4
摘要: 目的 探讨2型糖尿病(T2DM)发病与高密度脂蛋白(HDL)的内在分子生物学机制。 方法 采用分子信息学方法,借助GEO Datasets数据库与比较毒理基因组学数据库(CTD),分别获取T2DM与HDL关联的基因,并筛选出二者共同的差异表达基因(DEGs)。采用DAVID在线软件,对T2DM与HDL关联的共同DEGs进行基因本体论(GO)分析和KEGG信号通路等基因富集分析;采用String在线软件和Cytoscape的插件MCODE,对T2DM与HDL关联的共同DEGs进行蛋白互作(PPI)网络分析。 结果 GEO与CTD数据库分析显示,T2DM与HDL关联的有13个DEGs;GO分析表明,T2DM与HDL共同DEGs参与了胆固醇代谢过程等生物学进程;KEGG信号通路富集结果表明,T2DM与HDL共同DEGs参与了HIF-1信号通路、Toll样受体信号通路、cGMP-PKG信号通路等;PPI分析结果显示,T2DM与HDL关联的13个DEGs均参与了网路构建,该蛋白网络共有27条边,平均蛋白节点度为4.15,局部聚类系数为0.74,蛋白相互作用网络具有统计学差异(P<0.001),T2DM与HDL相关的蛋白网络由LEPR、MAPK3、AKT1、NOS3、APOE和SCARB1等6个节点蛋白组成。 结论 T2DM发病主要通过胆固醇代谢过程、HIF-1信号通路、Toll样受体信号通路、cGMP-PKG信号通路等与HDL异常关联,可能的因果关联尚需进一步研究。
中图分类号:
[1] | Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th)edition [J]. Diabetes Res Clin Pract, 2019, 157: 107843. doi: 10.1016/j.diabres.2019.107843. |
[2] | Dominguez-Cruz MG, de Lourdes MM, Totomoch-Serra A, et al. Maya gene variants related to the risk of type 2 diabetes in a family-based association study [J]. Gene, 2020, 730: 144259. doi: 10.1016/j.gene.2019.144259. |
[3] | Almgren P, Lehtovirta M, Isomaa B, et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study [J]. Diabetologia, 2011, 54(11): 2811-2819. |
[4] | Merino J, Udler M S, Leong A, et al. A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction [J]. Curr Diab Rep, 2017,17(12): 135. |
[5] | 莫志伟, 欧志君, 区景松. 高密度脂蛋白的水平与功能[J]. 生理科学进展, 2018,49(4): 247-252. MO Zhiwei, OU Zhijun, OU Jingsong. High Density Lipoprotein: Levels and Functions [J]. Progress in Physiological Sciences, 2018, 49(4): 247-252. |
[6] | Hermans MP, Valensi P. Elevated triglycerides and low high-density lipoprotein cholesterol level as marker of very high risk in type 2 diabetes [J]. Curr Opin Endocrinol Diabetes Obes, 2018, 25(2): 118-129. |
[7] | Jain P, Vig S, Datta M, et al. Systems biology approach reveals genome to phenome correlation in type 2 diabetes [J]. PLoS One, 2013, 8(1): e53522. |
[8] | Frederiksen CM, Hojlund K, Hansen L, et al. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes [J]. Diabetologia, 2008, 51(11): 2068-2077. |
[9] | Dalmas E, Venteclef N, Caer C, et al. T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes [J]. Diabetes, 2014, 63(6): 1966-1977. |
[10] | van Tienen F H, van der Kallen C J, Lindsey P J, et al. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity [J]. Int J Obes(Lond), 2011, 35(9): 1154-1164. |
[11] | Haemmerle M, Keller T, Egger G, et al. Enhanced lymph vessel density, remodeling, and inflammation are reflected by gene expression signatures in dermal lymphatic endothelial cells in type 2 diabetes [J]. Diabetes, 2013, 62(7): 2509-2529. |
[12] | Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus [J]. PLoS One, 2011, 6(8): e22839. |
[13] | Grayson BL, Wang L, Aune TM. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes [J]. Genes Immun, 2011, 12(5): 341-351. |
[14] | Kaizer EC, Glaser CL, Chaussabel D, et al. Gene expression in peripheral blood mononuclear cells from children with diabetes [J]. J Clin Endocrinol Metab, 2007, 92(9): 3705-3711. |
[15] | Kanatsuna N, Taneera J, Vaziri-Sani F, et al. Autoimmunity against INS-IGF2 protein expressed in human pancreatic islets [J]. J Biol Chem, 2013, 288(40): 29013-29023. |
[16] | Taneera J, Fadista J, Ahlqvist E, et al. Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes [J]. Mol Cell Endocrinol, 2013, 375(1-2): 35-42. |
[17] | Taneera J, Lang S, Sharma A, et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets [J]. Cell Metab, 2012, 16(1): 122-134. |
[18] | Dominguez V, Raimondi C, Somanath S, et al. Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells [J]. J Biol Chem, 2011, 286(6): 4216-4225. |
[19] | Andreou E, Papandreou D, Hajigeorgiou P, et al. Type 2 diabetes and its correlates in a first nationwide study among Cypriot adults [J]. Prim Care Diabetes, 2017, 11(2): 112-118. |
[20] | Chen L, Chen XW, Huang X, et al. Regulation of glucose and lipid metabolism in health and disease [J]. Sci China Life Sci, 2019, 62(11): 1420-1458. |
[21] | Ding J, Reynolds LM, Zeller T, et al. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease [J]. Diabetes, 2015, 64(10): 3464-3474. |
[22] | Dullaart R, Pagano S, Perton FG, et al. Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus [J]. Int J Mol Sci, 2019, 20(3). pii: E732. doi: 10.3390/ijms20030732. |
[23] | Leanca CC, Nunes VS, Nakandakare ER, et al. Does plasma HDL-C concentration interact with whole-body cholesterol metabolism? [J]. Nutr Metab Cardiovasc Dis, 2013, 23(4): 279-284. |
[24] | Montemurro C, Nomoto H, Pei L, et al. IAPP toxicity activates HIF1alpha/PFKFB3 signaling delaying beta-cell loss at the expense of beta-cell function [J]. Nat Commun, 2019, 10(1): 2679. |
[25] | Lin Y, Shen J, Li D, et al. MiR-34a contributes to diabetes-related cochlear hair cell apoptosis via SIRT1/HIF-1alpha signaling [J]. Gen Comp Endocrinol, 2017, 246: 63-70. |
[26] | Li L, Pan Z, Yang X. Key genes and co-expression network analysis in the livers of type 2 diabetes patients [J]. J Diabetes Investig, 2019, 10(4): 951-962. |
[27] | Nishiyama Y, Goda N, Kanai M, et al. HIF-1alpha induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice [J]. J Hepatol, 2012, 56(2): 441-447. |
[28] | Arias-Loste M T, Fabrega E, Lopez-Hoyos M, et al. The Crosstalk between Hypoxia and Innate Immunity in the Development of Obesity-Related Nonalcoholic Fatty Liver Disease [J]. Biomed Res Int, 2015, 2015: 319745. |
[29] | Walter KM, Schonenberger MJ, Trotzmuller M, et al. Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy [J]. Cell Metab, 2014, 20(5): 882-897. |
[30] | Taha IM, Abdu AA, Abd EGE. Expression of toll-like receptor 4 and its connection with type 2 diabetes mellitus [J]. Cell Mol Biol(Noisy-le-grand), 2018, 64(13): 15-20. |
[31] | Westwell-Roper C, Nackiewicz D, Dan M, et al. Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes[J]. Immunol Cell Biol, 2014, 92(4):314-323. |
[32] | Ji Y, Sun S, Shrestha N, et al. Toll-like receptors TLR2 and TLR4 block the replication of pancreatic beta cells in diet-induced obesity[J]. Nat Immunol, 2019, 20(6):677-686. |
[33] | Yamada H, Umemoto T, Kawano M, et al. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes[J]. Biochem Biophys Res Commun, 2017, 484(2):403-408. |
[34] | Schuchardt M, Prufer N, Tu Y, et al. Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells[J]. Sci Rep, 2019, 9(1):3421. |
[35] | Reyna S M, Ghosh S, Tantiwong P, et al. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects[J]. Diabetes, 2008, 57(10):2595-2602. |
[36] | Zhang X, Hiam D, Hong YH, et al. Nitric oxide is required for the insulin sensitizing effects of contraction in mouse skeletal muscle[J]. J Physiol, 2017, 595(24):7427-7439. |
[37] | Hopf AE, Andresen C, Kotter S, et al. Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1[J]. Circ Res, 2018, 123(3):342-355. |
[38] | Kuo KK, Wu BN, Liu CP, et al. Xanthine-based KMUP-1 improves HDL via PPARgamma/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss[J]. J Lipid Res, 2015, 56(11):2070-2084. |
[1] | 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25. |
[2] | 郑凤杰,宋玉文,孙爱丽,潘喆,王殿辉,娄能俊,吕丽,庄向华,陈诗鸿. 糖尿病周围神经病变与肌少症的关联性[J]. 山东大学学报 (医学版), 2021, 59(6): 38-44. |
[3] | 刘萍,宋玉文,王萍,田光伟,郑凤杰,吕丽,杜娇娇,张静,庄向华,陈诗鸿. 维生素D缺乏与2型糖尿病合并抑郁状态的相关性[J]. 山东大学学报 (医学版), 2021, 59(6): 51-56,102. |
[4] | 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14. |
[5] | 金海燕,张炎,马小莉,韩羽,赵蕙琛,刘元涛,张玉超. MiR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报 (医学版), 2020, 58(3): 94-98. |
[6] | 曾雁冰,王秋鹏,方亚. 厦门市糖尿病“三师共管”模式的卫生经济学评价[J]. 山东大学学报 (医学版), 2019, 57(8): 89-94. |
[7] | 李明卓,孙秀彬,王春霞,杨洋,刘新辉,刘言训,薛付忠,袁中尚. 血脂正常人群HDL-C纵向变化与冠心病的关联性分析:一项回顾性队列研究[J]. 山东大学学报 (医学版), 2019, 57(8): 110-116. |
[8] | 姜立娟,刘福强,蒋子允,李文娟,林鹏,王川,侯新国,陈丽. 达格列净改善超重及肥胖2型糖尿病患者脂代谢及内脏脂肪含量[J]. 山东大学学报 (医学版), 2019, 57(6): 87-93. |
[9] | 杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元. 袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 20-26. |
[10] | 徐琼琼,郭晓雷,楚洁,景正月,张新益,周成超. 山东省2型糖尿病患者健康相关生命质量及其影响因素[J]. 山东大学学报 (医学版), 2019, 57(3): 96-103. |
[11] | 田忠艳,李玉倩,刘晓田,史园园,张海庆,张霞,千新玲,尹磊,赵景志,王重建. PSMD6基因rs831571位点多态性与2型糖尿病易感性的病例对照研究[J]. 山东大学学报 (医学版), 2018, 56(7): 51-56. |
[12] | 陈攀,蒋春霞,雷艺. 2型糖尿病患者外周血突触融合蛋白8表达与慢性炎症、糖脂代谢的相关性[J]. 山东大学学报 (医学版), 2018, 56(12): 26-32. |
[13] | 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86. |
[14] | 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11. |
[15] | 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72. |
|