您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (3): 99-106.doi: 10.6040/j.issn.1671-7554.0.2019.1396

• • 上一篇    下一篇

2型糖尿病发病与高密度脂蛋白关系的机制研究

唐博1,2,邵静3,崔静4,孙健平1,4   

  1. 1. 青岛大学公共卫生学院营养与食品卫生学, 山东 青岛 266021;2. 平邑县人民医院耳鼻喉科, 山东 平邑 273300;3. 青岛市李沧区妇幼保健计划生育服务中心, 山东 青岛 266041;4. 青岛市疾病预防控制中心/青岛市预防医学研究院, 山东 青岛 266033
  • 出版日期:2020-03-10 发布日期:2022-09-27
  • 通讯作者: 崔静. E-mail: cuijing_0623@163.com;孙健平. E-mail:qdcdcsjp@126.com
  • 基金资助:
    青岛糖尿病预防项目(WDF05-108、WDF07-308);青岛市科技局立项(19-6-1-5-nsh);青岛市2017年度医药科研指导计划(2017-WJZD134);青岛市医疗卫生优秀人才培养项目

A mechanism study on the association of type 2 diabetes and high-density lipoprotein

TANG Bo1,2, SHAO Jing3, CUI Jing4, SUN Jianping1,4   

  1. 1.Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266021, Shandong, China;
    2. Department of Otolaryngology, Peoples Hospital of Pingyi County, Linyi 273300, Shandong, China;
    3. Family Planning Service Center for Maternal and Child Health in Licang District, Qingdao 266041, Shandong, China;
    4. Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao 266033, Shandong, China
  • Online:2020-03-10 Published:2022-09-27

摘要: 目的 探讨2型糖尿病(T2DM)发病与高密度脂蛋白(HDL)的内在分子生物学机制。 方法 采用分子信息学方法,借助GEO Datasets数据库与比较毒理基因组学数据库(CTD),分别获取T2DM与HDL关联的基因,并筛选出二者共同的差异表达基因(DEGs)。采用DAVID在线软件,对T2DM与HDL关联的共同DEGs进行基因本体论(GO)分析和KEGG信号通路等基因富集分析;采用String在线软件和Cytoscape的插件MCODE,对T2DM与HDL关联的共同DEGs进行蛋白互作(PPI)网络分析。 结果 GEO与CTD数据库分析显示,T2DM与HDL关联的有13个DEGs;GO分析表明,T2DM与HDL共同DEGs参与了胆固醇代谢过程等生物学进程;KEGG信号通路富集结果表明,T2DM与HDL共同DEGs参与了HIF-1信号通路、Toll样受体信号通路、cGMP-PKG信号通路等;PPI分析结果显示,T2DM与HDL关联的13个DEGs均参与了网路构建,该蛋白网络共有27条边,平均蛋白节点度为4.15,局部聚类系数为0.74,蛋白相互作用网络具有统计学差异(P<0.001),T2DM与HDL相关的蛋白网络由LEPR、MAPK3、AKT1、NOS3、APOE和SCARB1等6个节点蛋白组成。 结论 T2DM发病主要通过胆固醇代谢过程、HIF-1信号通路、Toll样受体信号通路、cGMP-PKG信号通路等与HDL异常关联,可能的因果关联尚需进一步研究。

关键词: 2型糖尿病, 高密度脂蛋白, 基因本体学论分析, KEGG分析, 蛋白互作网络分析

Abstract: Objective To explore the molecular mechanism of type 2 diabetes(T2DM)and high-density lipoprotein(HDL)by bioinformatics. Methods Genes of T2DM and HDL were obtained from GEO database and Comparative Toxicogenomics Database(CTD)to screen the same differentially expressed genes(DEGs). Gene function enrichment analysis of gene ontology(GO)and KEGG pathway in DEGs were analyzed with DAVID online software. Protein-protein interaction(PPI)network about DEGs was analyzed with String online software and MCODE of Cytoscape. 山 东 大 学 学 报 (医 学 版)58卷3期 -唐博,等.2型糖尿病发病与高密度脂蛋白关系的机制研究 \=- Results There were 13 DEGs associated with T2DM and HDL, which played a role in cholesterol metabolic process. The DEGs were involved in HIF-1 signaling pathway, Toll-like receptor signaling pathway and cGMP-PKG signaling pathway. All 13 DEGs were involved in the PPI network, which had 27 edges, with average protein node degree of 4.15 and local clustering coefficient of 0.74. The PPI network had a significant difference (P<0.001). The PPI network associated with T2DM and HDL was composed of 6 node proteins, including LEPR, MAPK3, AKT1, NOS3, APOE and SCARB1. Conclusion The pathogenesis of T2DM involves abnormal HDL through cholesterol metabolic process, HIF-1 signaling pathway, Toll-like receptor signaling pathway and cGMP-PKG signaling pathway. Further studies are needed to clarify the possible causal association between lipid and T2DM.

Key words: Type 2 diabetes mellitus, High-density lipoprotein, Gene ontology analysis, KEGG analysis, Protein-protein interaction network

中图分类号: 

  • R587.1
[1] Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th)edition [J]. Diabetes Res Clin Pract, 2019, 157: 107843. doi: 10.1016/j.diabres.2019.107843.
[2] Dominguez-Cruz MG, de Lourdes MM, Totomoch-Serra A, et al. Maya gene variants related to the risk of type 2 diabetes in a family-based association study [J]. Gene, 2020, 730: 144259. doi: 10.1016/j.gene.2019.144259.
[3] Almgren P, Lehtovirta M, Isomaa B, et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study [J]. Diabetologia, 2011, 54(11): 2811-2819.
[4] Merino J, Udler M S, Leong A, et al. A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction [J]. Curr Diab Rep, 2017,17(12): 135.
[5] 莫志伟, 欧志君, 区景松. 高密度脂蛋白的水平与功能[J]. 生理科学进展, 2018,49(4): 247-252. MO Zhiwei, OU Zhijun, OU Jingsong. High Density Lipoprotein: Levels and Functions [J]. Progress in Physiological Sciences, 2018, 49(4): 247-252.
[6] Hermans MP, Valensi P. Elevated triglycerides and low high-density lipoprotein cholesterol level as marker of very high risk in type 2 diabetes [J]. Curr Opin Endocrinol Diabetes Obes, 2018, 25(2): 118-129.
[7] Jain P, Vig S, Datta M, et al. Systems biology approach reveals genome to phenome correlation in type 2 diabetes [J]. PLoS One, 2013, 8(1): e53522.
[8] Frederiksen CM, Hojlund K, Hansen L, et al. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes [J]. Diabetologia, 2008, 51(11): 2068-2077.
[9] Dalmas E, Venteclef N, Caer C, et al. T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes [J]. Diabetes, 2014, 63(6): 1966-1977.
[10] van Tienen F H, van der Kallen C J, Lindsey P J, et al. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity [J]. Int J Obes(Lond), 2011, 35(9): 1154-1164.
[11] Haemmerle M, Keller T, Egger G, et al. Enhanced lymph vessel density, remodeling, and inflammation are reflected by gene expression signatures in dermal lymphatic endothelial cells in type 2 diabetes [J]. Diabetes, 2013, 62(7): 2509-2529.
[12] Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus [J]. PLoS One, 2011, 6(8): e22839.
[13] Grayson BL, Wang L, Aune TM. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes [J]. Genes Immun, 2011, 12(5): 341-351.
[14] Kaizer EC, Glaser CL, Chaussabel D, et al. Gene expression in peripheral blood mononuclear cells from children with diabetes [J]. J Clin Endocrinol Metab, 2007, 92(9): 3705-3711.
[15] Kanatsuna N, Taneera J, Vaziri-Sani F, et al. Autoimmunity against INS-IGF2 protein expressed in human pancreatic islets [J]. J Biol Chem, 2013, 288(40): 29013-29023.
[16] Taneera J, Fadista J, Ahlqvist E, et al. Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes [J]. Mol Cell Endocrinol, 2013, 375(1-2): 35-42.
[17] Taneera J, Lang S, Sharma A, et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets [J]. Cell Metab, 2012, 16(1): 122-134.
[18] Dominguez V, Raimondi C, Somanath S, et al. Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells [J]. J Biol Chem, 2011, 286(6): 4216-4225.
[19] Andreou E, Papandreou D, Hajigeorgiou P, et al. Type 2 diabetes and its correlates in a first nationwide study among Cypriot adults [J]. Prim Care Diabetes, 2017, 11(2): 112-118.
[20] Chen L, Chen XW, Huang X, et al. Regulation of glucose and lipid metabolism in health and disease [J]. Sci China Life Sci, 2019, 62(11): 1420-1458.
[21] Ding J, Reynolds LM, Zeller T, et al. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease [J]. Diabetes, 2015, 64(10): 3464-3474.
[22] Dullaart R, Pagano S, Perton FG, et al. Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus [J]. Int J Mol Sci, 2019, 20(3). pii: E732. doi: 10.3390/ijms20030732.
[23] Leanca CC, Nunes VS, Nakandakare ER, et al. Does plasma HDL-C concentration interact with whole-body cholesterol metabolism? [J]. Nutr Metab Cardiovasc Dis, 2013, 23(4): 279-284.
[24] Montemurro C, Nomoto H, Pei L, et al. IAPP toxicity activates HIF1alpha/PFKFB3 signaling delaying beta-cell loss at the expense of beta-cell function [J]. Nat Commun, 2019, 10(1): 2679.
[25] Lin Y, Shen J, Li D, et al. MiR-34a contributes to diabetes-related cochlear hair cell apoptosis via SIRT1/HIF-1alpha signaling [J]. Gen Comp Endocrinol, 2017, 246: 63-70.
[26] Li L, Pan Z, Yang X. Key genes and co-expression network analysis in the livers of type 2 diabetes patients [J]. J Diabetes Investig, 2019, 10(4): 951-962.
[27] Nishiyama Y, Goda N, Kanai M, et al. HIF-1alpha induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice [J]. J Hepatol, 2012, 56(2): 441-447.
[28] Arias-Loste M T, Fabrega E, Lopez-Hoyos M, et al. The Crosstalk between Hypoxia and Innate Immunity in the Development of Obesity-Related Nonalcoholic Fatty Liver Disease [J]. Biomed Res Int, 2015, 2015: 319745.
[29] Walter KM, Schonenberger MJ, Trotzmuller M, et al. Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy [J]. Cell Metab, 2014, 20(5): 882-897.
[30] Taha IM, Abdu AA, Abd EGE. Expression of toll-like receptor 4 and its connection with type 2 diabetes mellitus [J]. Cell Mol Biol(Noisy-le-grand), 2018, 64(13): 15-20.
[31] Westwell-Roper C, Nackiewicz D, Dan M, et al. Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes[J]. Immunol Cell Biol, 2014, 92(4):314-323.
[32] Ji Y, Sun S, Shrestha N, et al. Toll-like receptors TLR2 and TLR4 block the replication of pancreatic beta cells in diet-induced obesity[J]. Nat Immunol, 2019, 20(6):677-686.
[33] Yamada H, Umemoto T, Kawano M, et al. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes[J]. Biochem Biophys Res Commun, 2017, 484(2):403-408.
[34] Schuchardt M, Prufer N, Tu Y, et al. Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells[J]. Sci Rep, 2019, 9(1):3421.
[35] Reyna S M, Ghosh S, Tantiwong P, et al. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects[J]. Diabetes, 2008, 57(10):2595-2602.
[36] Zhang X, Hiam D, Hong YH, et al. Nitric oxide is required for the insulin sensitizing effects of contraction in mouse skeletal muscle[J]. J Physiol, 2017, 595(24):7427-7439.
[37] Hopf AE, Andresen C, Kotter S, et al. Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1[J]. Circ Res, 2018, 123(3):342-355.
[38] Kuo KK, Wu BN, Liu CP, et al. Xanthine-based KMUP-1 improves HDL via PPARgamma/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss[J]. J Lipid Res, 2015, 56(11):2070-2084.
[1] 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25.
[2] 郑凤杰,宋玉文,孙爱丽,潘喆,王殿辉,娄能俊,吕丽,庄向华,陈诗鸿. 糖尿病周围神经病变与肌少症的关联性[J]. 山东大学学报 (医学版), 2021, 59(6): 38-44.
[3] 刘萍,宋玉文,王萍,田光伟,郑凤杰,吕丽,杜娇娇,张静,庄向华,陈诗鸿. 维生素D缺乏与2型糖尿病合并抑郁状态的相关性[J]. 山东大学学报 (医学版), 2021, 59(6): 51-56,102.
[4] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[5] 金海燕,张炎,马小莉,韩羽,赵蕙琛,刘元涛,张玉超. MiR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报 (医学版), 2020, 58(3): 94-98.
[6] 曾雁冰,王秋鹏,方亚. 厦门市糖尿病“三师共管”模式的卫生经济学评价[J]. 山东大学学报 (医学版), 2019, 57(8): 89-94.
[7] 李明卓,孙秀彬,王春霞,杨洋,刘新辉,刘言训,薛付忠,袁中尚. 血脂正常人群HDL-C纵向变化与冠心病的关联性分析:一项回顾性队列研究[J]. 山东大学学报 (医学版), 2019, 57(8): 110-116.
[8] 姜立娟,刘福强,蒋子允,李文娟,林鹏,王川,侯新国,陈丽. 达格列净改善超重及肥胖2型糖尿病患者脂代谢及内脏脂肪含量[J]. 山东大学学报 (医学版), 2019, 57(6): 87-93.
[9] 杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元. 袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 20-26.
[10] 徐琼琼,郭晓雷,楚洁,景正月,张新益,周成超. 山东省2型糖尿病患者健康相关生命质量及其影响因素[J]. 山东大学学报 (医学版), 2019, 57(3): 96-103.
[11] 田忠艳,李玉倩,刘晓田,史园园,张海庆,张霞,千新玲,尹磊,赵景志,王重建. PSMD6基因rs831571位点多态性与2型糖尿病易感性的病例对照研究[J]. 山东大学学报 (医学版), 2018, 56(7): 51-56.
[12] 陈攀,蒋春霞,雷艺. 2型糖尿病患者外周血突触融合蛋白8表达与慢性炎症、糖脂代谢的相关性[J]. 山东大学学报 (医学版), 2018, 56(12): 26-32.
[13] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[14] 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11.
[15] 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!