山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (10): 31-39.doi: 10.6040/j.issn.1671-7554.0.2018.1030
• • 上一篇
潘世扬
PAN Shiyang
摘要: 肺癌是全球最常见的恶性肿瘤,也是癌症相关死亡的首位死因。晚期肺癌治疗主要是采用以化疗为主的综合疗法。目前主要依靠胸片等影像学检查定期进行化疗疗效评判,缺乏足够的特异性与敏感性,难以真正实现个体化治疗。因此寻找高敏感度的疗效考核指标就显得尤为重要。对目前临床应用肺癌治疗疗效评价的影像学和血液学标志物研究进展进行简要阐述。
中图分类号:
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30. [2] Torre L, Bray F, Siegel R, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. [3] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. Ca A Cancer J Clin, 2016, 66(2): 115-132. [4] Gridelli C, Rossi A, Carbone DP, et al. Non-small-cell lung cancer[J]. Nat Rev Dis Primers, 2015, 1: 15009. doi: 10.1038/nrdp.2015.9. [5] Mcloud TC. Lung cancer screening: current status[J]. La Radiol Med, 2014, 119(1): 1-3. [6] Bigbee WL, Gopalakrishnan V, Weissfeld JL, et al. A multiplexed serum biomarker immunoassay panel discriminates clinical lung cancer patients from high-risk individuals found to be cancer-free by CT screening[J]. J Thorac Oncol, 2012, 7(4): 698-708. [7] Knollmann FD, Kumthekar R, Fetzer D, et al. Assessing response to treatment in non - small-cell lung cancer: role of tumor volume evaluated by computed tomography[J]. Clin Lung Cancer, 2014, 15(2): 103-109. [8] Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors[J]. J Natl Cancer Inst, 2000, 92(3): 205-216. [9] Strauch LS, Eriksen RØ, Sandgaard M, et al. Assessing tumor response to treatment in patients withlung cancer using dynamic contrast-enhanced CT[J]. Diagnostics, 2016, 6(3): pii: E28. doi: 10.3390/diagnostics6030028. [10] Li XS, Fan HX, Fang H, et al. Value of whole-tumor dual-input perfusion CT in predicting the effect of multiarterial infusion chemotherapy on advanced non-small cell lung cancer[J]. AJR Am J Roentgenol, 2014, 203(5): 497-505. [11] 余花艳, 任统伟. 肺癌化疗前后增强能谱CT成像中碘含量变化与疗效的关系[J]. 实用癌症杂志, 2017, 32(1): 64-66. YU Huayan, REN Tongwei. Relationship Between the Changes of Iodine Content and Efficacy in Lung Cancer before and after Chemotherapy with CT Imaging[J]. The Practical Journal of Cancer, 2017, 32(01): 64-66. [12] Yu J, Li W, Zhang Z, et al. Prediction of early response to chemotherapy in lung cancer by using diffusion-weighted MR imaging[J]. The Scientific World Journal, 2014, 2014(2): 135841. doi: 10.1155/2014/135841. [13] Nensa F, Stattaus J, Morgan B, et al. Dynamic contrast-enhanced MRI parameters as biomarkers for the effect of vatalanib in patients with non-small-cell lung cancer[J]. Future Oncol, 2014, 10(5): 823-833. [14] Madsen PH, Holdgaard PC, Christensen JB, et al. Clinical utility of F-18 FDG PET-CT in the initial evaluation of lung cancer[J]. Eur J Nucl Med MolImaging, 2016, 43(11): 2084-2097. [15] 王甜甜, 赵晋华, 邢岩, 等.18F-FDG PET/CT显像评价非小细胞肺癌放化疗疗效及复发预测[J]. 中国医学计算机成像杂志, 2012,18(1): 58-62. WANG Tiantian, ZHAO Jinhua, XING Yan, et al.18F- FDG PET /CT for response evaluation and recurrence prediction before and after chemoradiotherapy for NSCLC[J]. Chinese Computed Medical Imaging, 2012, 18(1): 58-62. [16] Ohri N, Duan F, Machtay M, et al. Pretreatment FDG-PET metrics in stage III non-small cell lung cancer: ACRIN 6668/RTOG 0235[J]. J Natl Cancer Inst, 2015, 107(4): pii: djv004. doi: 10.1093/jnci/djv004. Print 2015 Apr. [17] Muinelo-Romay L, Vieito M, Abalo A, et al. Evaluation of circulating tumor cells and related events as prognostic factors and surrogate biomarkers in advanced NSCLC patients receiving first-line systemic treatment[J]. Cancers(Basel), 2014, 6(1): 153-165. [18] Chudasama D, Rice A, Soppa G, et al. Circulating tumour cells in patients with lung cancer undergoing endobronchial cryotherapy[J]. Cryobiology, 2015, 71(1): 161-163. [19] Aggarwal C, Wang X, Ranganathan A, et al. Circulating tumor cells as a predictive biomarker in patients with small cell lung cancer undergoing chemotherapy[J]. Lung Cancer, 2017, 112: 118-125. doi: 10.1016/j.lungcan.2017.08.008. Epub 2017 Aug 12. [20] Naito T, Tanaka F, Ono A, et al. Prognostic impact of circulating tumor cells in patients with small cell lung cancer[J]. J Thorac Oncol, 2012, 7(3): 512-519. [21] Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer cells[J]. N Engl J Med, 2008, 359(4): 366-377. [22] Cedrés S, Nuñez I, Longo M, et al. Serum tumor markers CEA, CYFRA21-1, and CA-125 are associated with worse prognosis in advanced non-small-cell lung cancer(NSCLC)[J]. Clinical Lung Cancer, 2011, 12(3): 172-179. [23] Nisman B, Lafair J, Heching N, et al. Evaluation of tissue polypeptide specific antigen, CYFRA 21-1, and carcinoembryonic antigen in nonsmall cell lung carcinoma: does the combined use of cytokeratin markers give any additional information?[J]. Cancer, 2015, 82(10): 1850-1859. [24] Järvisalo J, Hakama M, Knekt P, et al. Serum tumor markers CEA, CA 50, TATI, and NSE in lung cancer screening[J]. Cancer, 2015, 71(6): 1982-1988. [25] Burt RW, Ratcliffe JG, Stack BH, et al. Serum biochemical markers in lung cancer[J]. British Journal of Cancer, 1978, 37(5):714. [26] Facchinetti F, Aldigeri R, Aloe R, et al. CEA serum level as early predictive marker of outcome during EGFR-TKI therapy in advanced NSCLC patients[J]. Tumour Biol, 2015, 36(8): 5943-5951. [27] Gropp C, Havemann K, Lehmann FG. Carcinoembryonic antigen and ferritin in patients with lung cancer before and during therapy[J]. Cancer, 2015, 42(6): 2802-2808. [28] Zhao T, Jin Y, Mao G, et al. CYFRA 21-1 is an early predictor of chemotherapeutic effectiveness in advanced nonsmall cell lung cancer: An observational study[J]. Medicine, 2016, 95(52): e5748. [29] Ma L, Xie X, Wang H, et al. Clinical Evaluation of tumor markers for diagnosis in patients with non-small cell lung cancer in China[J]. Asian Pac J Cancer Prev, 2015, 16(12): 4891-4894. [30] Sone K, Oguri T, Nakao M, et al. CYFRA 21-1 as a predictive marker for non-small cell lung cancer treated with pemetrexed-based chemotherapy[J]. Anticancer Res, 2017, 37(2): 935-939. [31] Fizazi K, Cojean I, Pignon JP, et al. Normal serum neuron specific enolase(NSE)value after the first cycle of chemotherapy[J]. Cancer, 2015, 82(6): 1049-1055. [32] Liu X, Zhang W, Yin W, et al. The prognostic value of the serum neuron specific enolase and lactate dehydrogenase in small cell lung cancer patients receiving first-line platinum-based chemotherapy[J]. Medicine Medicine(Baltimore), 2017, 96(46): e8258. doi: 10.1097/MD.0000000000008258. [33] Molina R, Filella X, Augé JM. ProGRP: a new biomarker for small cell lung cancer[J]. Clinical Biochemistry, 2004, 37(7): 505-511. [34] Nisman B, Biran H, Ramu N, et al. The diagnostic and prognostic value of ProGRP in lung cancer[J]. Anticancer Research, 2009, 29(11):4827. [35] Wójcik E, Kulpa J K, Saskorczyńska B, et al. ProGRP and NSE in therapy monitoring in patients with small cell lung cancer[J]. Anticancer Research, 2008, 28(5B): 3027. [36] Jr DL, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA[J]. J Clin Oncol, 2014, 32(6): 579-586. [37] Calabuig-Fari(~overn)as S, Jantus-Lewintre E, Herreros-Pomares A, et al. Circulating tumor cells versus circulating tumor DNA in lung cancer-which one will win?[J]. Transl Lung Cancer Res, 2016, 5(5): 466-482. [38] Bracht JWP, Mayo-de-Las-Casas C, Berenguer J, et al. The present and future of liquid biopsies in non-small cell lung cancer: combining four biosources for diagnosis, prognosis, prediction, and disease monitoring[J]. Curr Oncol Rep, 2018, 20(9): 70. doi: 10.1007/s11912-018-0720-z. [39] Leon SA, Shapiro B, Sklaroff DM, et al. Free DNA in the serum of cancer patients and the effect of therapy[J]. Cancer Res, 1977, 37(3): 646-650. [40] Coco S, Alama A, Vanni I, et al. Circulating cell-free DNA and circulating tumor cells as prognostic and predictive biomarkers in advanced non-small cell lung cancer patients treated with first-line chemotherapy[J]. Int J Mol Sci, 2017, 18(5): pii: E1035. doi: 10.3390/ijms18051035. [41] Pathak AK, Bhutani M, Kumar S, et al. Circulating cell-free DNA in plasma/serum of lung cancer patients as a potential screening and prognostic tool[J]. Clin Chem, 2006, 52(10): 1833-1842. [42] 陈丹, 潘世扬, 张丽霞, 等. 人血浆DNA双重实时荧光定量PCR检测法的建立[J]. 临床检验杂志, 2007, 25(3): 177-179. CHEN Dan, PAN Shiyang, ZHANG Lixia, et al. A novel duplex real-tmie PCR assay for quantification of plasma DNA[J]. Chinese Journal of Clinical Laboratory Science, 2007, 25(3): 177-179. [43] 陈丹, 潘世扬, 张丽霞, 等. 实时荧光定量PCR在人血液循环DNA检测中的应用[J]. 中华检验医学杂志, 2007, 10: 1162-1163. [44] Pan S, Xia W, Ding Q, et al. Can plasma DNA monitoring be employed in personalized chemotherapy for patients with advanced lung cancer?[J]. Chin J Lab Med, 2012, 66(2): 131-137. [45] Gao W, Lu X, Liu L, et al. MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer[J]. Cancer Biol Ther, 2012, 13(5): 330-340. [46] Markou A, Zavridou M, Lianidou ES. miRNA-21 as a novel therapeutic target in lung cancer[J]. Lung Cancer(Auckl), 2016, 7: 19-27. doi: 10.2147/LCTT.S60341. eCollection 2016. [47] Chen X, Xu Y, Liao X, et al. Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer[J]. Tumour Biol, 2016, 37(9): 11927-11936. [48] Wang R, Ye F, Zhen Q, et al. MicroRNA-148b is a potential prognostic biomarker and predictor of response to radiotherapy in non-small-cell lung cancer[J]. J Physiol Biochem, 2016, 72(2): 337-343. [49] Yan G, Yao R, Tang D, et al. Prognostic significance of microRNA expression in completely resected lung adenocarcinoma and the associated response to erlotinib[J]. Med Oncol, 2014, 31(10): 203. doi: 10.1007/s12032-014-0203-5. Epub 2014 Sep 6. [50] Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J]. Cancer Res, 2004, 64(11): 3753-3756. [51] Zhan B, Lu D, Luo P, et al. Prognostic value of expression of microRNAs in non-small cell lung cancer: a systematic review and meta-analysis[J]. Clin Lab, 2016, 62(11): 2203-2211. [52] Liu Q, Yu Z, Yuan S, et al. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer[J]. Oncotarget, 2017, 8(8): 13048-13058. [53] Yuwen D, Sheng B, Liu J, et al. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer[J]. Eur Rev Med Pharmacol Sci, 2017, 21(11): 2650-2658. [54] Pan S, Wang F, Huang P, et al. The study on newly developed McAb NJ001 specific to non-small cell lung cancer and its biological characteristics[J]. PLoS One, 2012, 7(3): e33009. doi: 10.1371/journal.pone.0033009. Epub 2012 Mar 30. [55] 李大千, 吴蕾, 荆俊鹏, 等. 生物发光成像对裸鼠肺部转移瘤的早期检测研究[J]. 南京医科大学学报(自然科学版), 2015, 35(11): 1522-1527. LI Daqian, WU Lei, JING Junpeng, et al. Application of bioluminescence imaging on early intrapulmonary micrometastases tumors in mouse model[J]. Journal of Nanjing Medical University(Natural Sciences), 2015, 35(11): 1522-1527. [56] 王悦, 潘世扬, 朱娟娟, 等. 免疫磁珠对肺腺癌小鼠模型micro-CT的增强作用. 中国肿瘤临床, 2017, 44(12): 583-588. WANG Yue, PAN Shiyang, ZHU Juanjuan, et al. Enhanced effect of immunomagnetic beads on micro-CT scan of the lung adenocarcinoma mouse model[J]. Chinese Journal of Clinical Oncology, 2017, 44(12): 583-588. [57] 彭蘡, 潘世扬, 王芳, 等. 非小细胞肺癌患者血清中SP70的检测及其临床意义[J]. 中华检验医学杂志, 2012, 35(6): 554-558. PENG Ying, PAN Shiyang, WANG Fang, et al. A preliminary study on serum protein SP70 as a novel biomarker for the detection of non-small cell lung cancer[J]. Chin J Lab Med, 2012, 35(6): 554-558. [58] Liu J, Zhang W, Gu M, et al. Serum SP70 is a sensitive predictor of chemotherapy response in patients with advanced nonsmall cell lung cancer[J]. Cancer Med, 2018, 7(7): 2925-2933. [59] 凌芸, 王芳, 朱全, 等. 非小细胞肺癌特异性循环肿瘤细胞的检测及其临床意义[J]. 中华检验医学杂志, 2013, 36(11): 1002-1007. LING Yun, WANG Fang, ZHU Quan, et al. A preliminary study on the detection of specific circulating lung cancer cells by flow cytometry for non-small cell lung cancer[J]. Chin J Lab Med, 2013, 36(11): 1002-1007. [60] 王加, 潘世扬, 张炳峰, 等. 特异性循环肺癌细胞流式检测参考区间的建立及在非小细胞肺癌化疗中的应用[J]. 中华检验医学杂志, 2015, 38(1): 45-48. WANG Jia, PAN Shiyang, ZHANG Bingfeng, et al. Establishment of the reference intervals of specific circulating lung cancer cell and its application on non-small cell lung cancer chemotherapy[J]. Chin J Lab Med, 2015, 38(1): 45-48. [61] Liu H, Zhang T, Li X, et al. Predictive value of MMP-7 expression for response to chemotherapy and survival in patients with non-small cell lung cancer[J]. Cancer Sci, 2010, 99(11): 2185-2192. [62] 钱海红. 吉非替尼治疗非小细胞肺癌的疗效及对血清 VEGF、MMP-9和 TIMP1的影响[J]. 河北医药, 2014, 36(16): 2416-2418. QIAN Haihong. Therapeutic effect of gefitinib on non small cell lung carcinoma and its influence on serum VEGF, MMP-9 and TIMP-1[J]. Hebei Medicine, 2014, 36(16): 2416-2418. [63] Zhao X, Wang S, Wu J, et al. Association of TERT polymorphisms with clinical outcome of non-small cell lung cancer patients[J]. Plos One, 2015, 10(5): e0129232. doi: 10.1371/journal.pone.0129232. eCollection 2015. [64] Huang ZL, Cao X, Luo RZ, et al. Analysis of ERCC1, BRCA1, RRM1 and TUBB3 as predictors of prognosis in patients with non-small cell lung cancer who received cisplatin-based adjuvant chemotherapy: a prospective study[J]. Oncol Lett, 2016, 11(1): 299-305. [65] Ryu JS, Memon A, Lee SK. ERCC1 and personalized medicine in lung cancer[J]. Ann Transl Med, 2014, 2(4): 32. doi: 10.3978/j.issn.2305-5839.2013.12.01. [66] Li C, Liu M, Yan A, et al. ERCC1 and the efficacy of cisplatin in patients with resected non-small cell lung cancer[J]. Tumour Biol, 2014, 35(12): 12707-12712. [67] Salven P, Ruotsalainen T, Mattson K, et al. High pre-treatment serum level of vascular endothelial growth factor(VEGF)is associated with poor outcome in small-cell lung cancer[J]. Int J Cancer, 2015, 79(2): 144-146. [68] 徐佳, 刘爱宁, 严霜红. 血清TGF-β1和VEGF水平判定吉西他滨联合卡铂治疗非小细胞肺癌患者反应性临床研究[J]. 河北医学, 2016, 22(1): 55-58. XU Jia, LIU Aining, YAN Shuanghong. Serum TGF-β1 and VEGF levels predicting patients response in gemcitabine plus carboplatin treating non-small cell lung cancer[J]. Hebei Medicine, 2016, 22(1): 55-58. |
[1] | 阮祥燕,程姣姣,杜娟,谷牧青. 卵巢组织冷冻保存[J]. 山东大学学报 (医学版), 2022, 60(9): 24-30. |
[2] | 韩靖,贾春玲. 肺癌患者胸外手术前治疗牙周基础疾病对预防术后肺炎发生的效果评价[J]. 山东大学学报 (医学版), 2022, 60(9): 113-118. |
[3] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[4] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
[5] | 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117. |
[6] | 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34. |
[7] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
[8] | 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37. |
[9] | 孙继业,王紫欧,孙晓伟,李洪涛. 中药熏蒸联合体外冲击波对72例髋关节撞击综合征临床疗效、血清炎症因子水平的影响[J]. 山东大学学报 (医学版), 2022, 60(4): 76-81. |
[10] | 李青,林雪艳,刘天航,李晓文,范明喆,赵瑞瑞,田永杰. 经阴道网片盆底重建术的疗效中长期随访[J]. 山东大学学报 (医学版), 2022, 60(3): 71-75. |
[11] | 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139. |
[12] | 于金明,颜薇薇,陈大卫. 肺癌放射免疫新实践[J]. 山东大学学报 (医学版), 2021, 59(9): 1-8. |
[13] | 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118. |
[14] | 苗壮,刘培来,卢群山,姚天笑,李松林,罗德素. 双柱活动型单髁假体治疗膝关节内侧骨关节炎的早期疗效分析[J]. 山东大学学报 (医学版), 2021, 59(5): 90-95. |
[15] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
|