山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (12): 117-124.doi: 10.6040/j.issn.1671-7554.0.2024.0704
• 综述 • 上一篇
浩妍1,2,3,4,*,崔丽梅2,3,4,*,陈颖2,3,4,5,杨玉娟2,3,4,宋西成2,3,4
HAO Yan1,2,3,4,*, CUI Limei2,3,4*, CHEN Ying2,3,4,5, YANG Yujuan2,3,4, SONG Xicheng2,3,4
摘要: 气道炎症性疾病主要包括变应性鼻炎、慢性鼻窦炎、哮喘、慢性阻塞性肺病等,其特征是气道炎症和气道高反应性。在过去的几年里,代谢组学已成为研究气道炎症性疾病的一个重要工具。随着分析技术的不断进步和新方法的开发,代谢组学的灵敏度、准确度和通量将得到进一步提高,从而更加深入了解变应性鼻炎、哮喘、慢性阻塞性肺病等疾病的代谢变化。本文概述代谢组学在各种气道炎症性疾病方面的研究进展,通过对血液、痰液、尿液、粪便、呼出气冷凝液等分析,揭示多种与炎症反应、氧化应激等相关的代谢通路和产物,以期为气道炎症性疾病的精准医疗提供新方向,为理解疾病的分子机制、发现潜在的生物标志物、评估治疗效果以及开发新的治疗方法提供全新视角。
中图分类号:
[1] Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases[J]. Inflamm Res, 2019, 68(1): 59-74. [2] 袁玥, 付圣尧, 姜彦, 等. 细胞焦亡在慢性气道炎症性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 166-171. YUAN Yue, FU Shengyao, JIANG Yan, et al. Research progress of pyroptosis in chronic airway inflammatory disease[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 166-171. [3] Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485. [4] Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms[J]. Nat Rev Mol Cell Biol, 2016, 17(7): 451-459. [5] Zhang AH, Sun H, Yan GL, et al. Metabolomics for biomarker discovery: moving to the clinic[J]. Biomed Res Int, 2015, 2015: 354671. doi:10.1155/2015/354671. [6] Jacob M, Lopata AL, Dasouki M, et al. Metabolomics toward personalized medicine[J]. Mass Spectrom Rev, 2019, 38(3): 221-238. [7] Vizuet-de-Rueda JC, Montero-Vargas JM, Galván-Morales Má, et al. Current Insights on the impact of proteomics in respiratory allergies[J]. Int J Mol Sci, 2022, 23(10): 5703. doi: 10.3390/ijms23105703. [8] Nobakht M Gh BF, Aliannejad R, Rezaei-Tavirani M, et al. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis[J]. Biomarkers, 2015, 20(1): 5-16. [9] Bhattacharyya N, Orlandi RR, Grebner J, et al. Cost burden of chronic rhinosinusitis: a claims-based study[J]. Otolaryngol Head Neck Surg,2011,144(3): 440-445. [10] Li JX, Wang ZZ, Zhai GT, et al. Untargeted metabolomic profiling identifies disease-specific and outcome-related signatures in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2022, 150(3): 727-735. [11] Andri c S, Meyer T, Rigolet A, et al. Lipopeptide interplay mediates molecular interactions between soil bacilli and pseudomonads[J]. Microbiol Spectr, 2021, 9(3): e0203821. doi:10.1128/spectrum.02038-21. [12] Xie S, Zhang C, Xie Z, et al. Serum metabolomics identifies uric acid as a possible novel biomarker for predicting recurrence of chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2023, 61(6): 541-551. [13] Vickery TW, Armstrong M, Kofonow JM, et al. Altered tissue specialized pro-resolving mediators in chronic rhinosinusitis[J]. Prostaglandins Leukot Essent Fatty Acids, 2021, 164: 102218. doi:10.1016/j.plefa.2020.102218. [14] Beegun I, Koenis DS, Alusi G, et al. Dysregulated maresin concentrations in plasma and nasal secretions from patients with chronic rhinosinusitis[J]. Front Immunol, 2021, 12: 733019. doi:10.3389/fimmu.2021.733019. [15] Drazdauskait(·overe)G, Layhadi JA, Shamji MH. Mechanisms of allergen immunotherapy in allergic rhinitis[J]. Curr Allergy Asthma Rep, 2020, 21(1): 2. doi:10.1007/s11882-020-00977-7. [16] Zhou YJ, Li LS, Sun JL, et al. 1H NMR-based metabolomic study of metabolic profiling for pollinosis[J]. World Allergy Organ J, 2019, 12(1): 100005. doi:10.1016/j.waojou.2018.11.005. [17] Shi HY, Pan C, Ma TT, et al. Clinical efficacy evaluation of 1-year subcutaneous immunotherapy for Artemisia sieversiana pollen allergic rhinitis by serum metabolomics[J]. Front Pharmacol, 2020, 11: 305. doi:10.3389/fphar.2020.00305. [18] Chen Z, He SC, Wei YH, et al. Fecal and serum metabolomic signatures and gut microbiota characteristics of allergic rhinitis mice model[J]. Front Cell Infect Microbiol, 2023, 13: 1150043. doi:10.3389/fcimb.2023.1150043. [19] Yuan YZ, Wang C, Wang GQ, et al. Airway microbiome and serum metabolomics analysis identify differential candidate biomarkers in allergic rhinitis[J]. Front Immunol, 2022, 12: 771136. doi:10.3389/fimmu.2021.771136. [20] Rittchen S, Heinemann A. Therapeutic potential of hematopoietic prostaglandin D2 synthase in allergic inflammation[J].Cells, 2019, 8(6): 619. doi: 10.3390/cells8060619. [21] Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2[J]. J Exp Med, 2001, 193(2): 255-261. [22] Adamko DJ, Khamis MM, Steacy LM, et al. Severity of allergic rhinitis assessed by using urine metabolomic profiling: proof of concept[J]. J Allergy Clin Immunol, 2018,142(2): 687-689. [23] Xie SB, Jiang SJ, Zhang H, et al. Prediction of sublingual immunotherapy efficacy in allergic rhinitis by serum metabolomics analysis[J]. Int Immunopharmacol, 2021, 90: 107211. doi:10.1016/j.intimp.2020.107211. [24] Tao QL, Zhu YJ, Wang TY, et al. Identification and analysis of lipid metabolism-related genes in allergic rhinitis[J]. Lipids Health Dis, 2023, 22(1): 105. doi:10.1186/s12944-023-01825-z. [25] Sawane K, Nagatake T, Hosomi K, et al. Dietary omega-3 fatty acid dampens allergic rhinitis via eosinophilic production of the anti-allergic lipid mediator 15-hydroxyeicosapentaenoic acid in mice[J]. Nutrients, 2019, 11(12): 2868. doi:10.3390/nu11122868. [26] 徐芳,田国雄,孙倍倍,等.重度哮喘的生物与细胞疗法研究进展[J].山东大学学报(医学版), 2024, 62(5): 35-42. XU Fang, TIAN Guoxiong, SUN Beibei, et al. Research progress on biological and cellular therapies for severe asthma[J]. Journal of Shandong University(Health Sciences), 2024, 62(5): 35-42. [27] Johnson RK, Brunetti T, Quinn K, et al. Discovering metabolite quantitative trait loci in asthma using an lsolated population[J]. J Allergy Clin Immunol, 2022, 149(5): 1807-1811. [28] Peters U, Dixon AE, Forno E. Obesity and asthma[J]. J Allergy Clin Immunol, 2018, 141(4): 1169-1179. [29] Liu Y, Zheng J, Zhang HP, et al. Obesity-associated metabolic signatures correlate to clinical and inflammatory profiles of asthma: a pilot study[J]. Allergy Asthma Immunol Res, 2018, 10(6): 628-647. [30] Zhou B, Jiang GT, Liu H, et al. Dysregulated arginine metabolism in young patients with chronic persistent asthma and in human bronchial epithelial cells[J]. Nutrients, 2021, 13(11): 4116. doi:10.3390/nu13114116. [31] Lee Y, Chen H, Chen W, et al. Metabolomic associations of asthma in the hispanic community hea] th study/study of latinos[J]. Metabolites, 2022,12(4): 359. doi: 10.3390/metabo12040359. [32] Tao JL, Chen YZ, Dai QG, et al. Urine metabolic profiles in paediatric asthma[J]. Respirology, 2019, 24(6): 572-581. [33] Kolmert J, Gómez C, Balgoma D, et al. Urinary leukotriene E4 and prostaglandin D2 metabolites increase in adult and childhood severe asthma characterized by type 2 inflammation. A clinical observational study[J]. Am J Respir Crit Care Med, 2021, 203(1): 37-53. [34] Reinke SN, Naz S, Chaleckis R, et al. Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study[J]. Eur Respir J, 2022, 59(6): 2101733. doi:10.1183/13993003.01733-2021. [35] Li WJ, Zhao Y, Gao Y, et al. Lipid metabolism in asthma: immune regulation and potential therapeutic target[J]. Cell Immunol, 2021, 364: 104341. doi:10.1016/j.cellimm.2021.104341. [36] Brandsma J, Schofield JPR, Yang X, et al. Stratification of asthma by lipidomic profiling of induced sputum supernatant[J]. J Allergy Clin Immunol, 2023, 152(1): 117-125. [37] Zein JG, Erzurum SC. Asthma is different in women[J]. Curr Allergy Asthma Rep, 2015, 15(6): 28. doi:10.1007/s11882-015-0528-y. [38] Song Z, Yan W, Abulikemu M, et al. Sphingolipid profiles and their relationship with inflammatory factors in asthmatic patients of different sexes[J]. Chronic Dis Transl Med, 2021, 7(3): 199-205. [39] George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease[J]. Ther Adv Chronic Dis, 2016, 7(1): 34-51. [40] Gai XY, Zhang LJ, Chang C, et al. Metabolomic analysis of serum glycerophospholipid levels in eosinophilic and neutrophilic asthma[J]. Biomed Environ Sci, 2019, 32(2): 96-106. [41] Rago D, Rasmussen MA, Lee-Sarwar KA, et al. Fish-oil supplementation in pregnancy, child metabolomics and asthma risk[J]. EBioMedicine, 2019, 46: 399-410. doi: 10.1016/j.ebiom.2019.07.057. [42] Ferrera MC, Labaki WW, Han MK. Advances in chronic obstructive pulmonary disease[J]. Annu Rev Med, 2021, 27(72): 119-134. [43] Tirelli C, Mira S, Belmonte LA, et al. Exploring the potential role of metabolomics in COPD: a concise review[J]. Cells, 2024, 13(6): 475. doi:10.3390/cells13060475. [44] Celejewska-Wójcik N, Kania A, Górka K, et al. Eicosanoids and eosinophilic inflammation of airways in stable COPD[J]. Int J Chron Obstruct Pulmon Dis, 2021,16: 1415-1424. doi:10.2147/COPD.S298678. [45] Correnti S, Preianò M, Gamboni F, et al. An integrated metabo-lipidomics profile of induced sputum for the identification of novel biomarkers in the differential diagnosis of asthma and COPD[J]. J Transl Med, 2024, 22(1): 301. doi: 10.1186/s12967-024-05100-2. [46] Horváth I, Hunt J, Barnes PJ, et al. Exhaled breath condensate: methodological recommendations and unresolved questions[J]. Eur Respir J, 2005, 26(3): 523-548. [47] Hunt J. Exhaled breath condensate: an overview[J]. Immunol Allergy Clin North Am, 2007, 27(4): 587-596. [48] Maniscalco M, Paris D, Melck DJ, et al. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: a pilot study[J]. Eur Respir J, 2018, 51(3): 1701825. doi:10.1183/13993003.01825-2017. [49] de Laurentiis G, Paris D, Melck D, et al. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate[J]. J Proteome Res, 2013, 12(3): 1502-1511. [50] Liang Y, Gai XY, Chang C, et al. Metabolomic profiling differences among asthma, COPD, and healthy subjects: a LC-MS-based metabolomic analysis[J]. Biomed Environ Sci, 2019, 32(9): 659-672. [51] Paige M, Burdick MD, Kim S, et al. Pilot analysis of the plasma metabolite profiles associated with emphysematous Chronic Obstructive Pulmonary Disease phenotype[J]. Biochem Biophys Res Commun, 2011, 413(4): 588-593. [52] Godbole S, Bowler RP. Metabolome features of COPD: a scoping review[J]. Metabolites, 2022, 12(7): 621. doi:10.3390/metabo12070621. [53] Kilk K, Aug A, Ottas A, et al. Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical characteristics[J]. Int J Mol Sci, 2018, 19(3): 666. doi:10.3390/ijms19030666. [54] Bowler RP, Jacobson S, Cruickshank C, et al. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes[J]. Am J Respir Crit Care Med, 2015,191(3): 275-284. [55] Celli BR, Locantore N, Yates J, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2012, 185(10): 1065-1072. [56] Halper-Stromberg E, Gillenwater L, Cruickshank-Quinn C, et al. Bronchoalveolar lavage fluid from COPD patients reveals more compounds associated with disease than matched plasma[J]. Metabolites, 2019, 9(8): 157. doi:10.3390/metabo9080157. [57] Balgoma D, Yang MX, Sjödin M, et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD[J]. Eur Respir J, 2016, 47(6): 1645-1656. [58] Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease[J]. Nat Commun, 2020,11(1): 5886. doi: 10.1038/s41467-020-19701-0. [59] 王凤燕, 梁振宇, 李雪萍, 等. 慢性阻塞性肺疾病近年临床研究热点[J]. 山东大学学报(医学版), 2024, 62(5): 7-15. WANG Fengyan, LIANG Zhenyu, LI Xueping, et al. Clinical research focus of chronic obstructive pulmonary disease in recent years[J]. Journal of Shandong University(Health Sciences), 2024, 62(5): 7-15. |
[1] | 孙丛丛,崔文静,张锦涛,张东,刘晓菲,潘云,亓倩,徐嘉蔚,曾荣,郭红喜,董亮. 铁死亡在支气管哮喘气道重塑中的作用[J]. 山东大学学报 (医学版), 2024, 62(7): 1-9. |
[2] | 王静,刘晓菲,曾荣,许长娟,张锦涛,董亮. 基于机器学习算法鉴定哮喘的坏死性凋亡相关生物标志物[J]. 山东大学学报 (医学版), 2024, 62(7): 21-32. |
[3] | 闫金燕,杨春,李雷,吴福玲,焦永莉,张晓蔚,李晶,张瑞珍,王磊,马香. 山东省儿童百日咳感染与哮喘的相关性[J]. 山东大学学报 (医学版), 2024, 62(7): 33-41. |
[4] | 张锦涛,董亮. 气道上皮及其源性细胞因子与哮喘:思考与展望[J]. 山东大学学报 (医学版), 2024, 62(5): 1-6. |
[5] | 丁伊人,刘婉莹,姚蕾,姚欣. 大环内酯类抗生素治疗哮喘的研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 21-27. |
[6] | 王婷,张丽,王刚. 神经心理性哮喘[J]. 山东大学学报 (医学版), 2024, 62(5): 28-34. |
[7] | 徐芳,田国雄,孙倍倍,陈馨怡,陈高莹,张睿琦,应颂敏,吴妙莲,张超,吴优倩. 重度哮喘的生物与细胞疗法研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 35-42. |
[8] | 石硕川,曾荣,张锦涛,张东,潘云,刘晓菲,许长娟,王莹,董亮. 基于生物信息学探索支气管哮喘中的潜在差异免疫基因和免疫浸润特征[J]. 山东大学学报 (医学版), 2024, 62(5): 43-53. |
[9] | 徐新军,邵丽婷,陈颖,刘会芳,杨玉娟,张宇,王浛睿,宋西成. SYN008与Xolair®对过敏性哮喘小鼠治疗作用效果比较:炎症与重塑[J]. 山东大学学报 (医学版), 2024, 62(12): 1-10. |
[10] | 曹原,张剑桥,孟祥伟,刘文,庞晓明. 治疗慢性鼻窦炎伴鼻息肉的国内药物临床研究现状[J]. 山东大学学报 (医学版), 2024, 62(12): 38-42. |
[11] | 步美玲,王金荣,冯梅,孙立锋. FOXM1在呼吸道病毒感染致哮喘小鼠急性发作中的机制[J]. 山东大学学报 (医学版), 2023, 61(6): 1-9. |
[12] | 王智璠,林小仙,阴佳璐,王东亮,王姝麒. 不同炖煮温度燕窝次生代谢化学成分组学[J]. 山东大学学报 (医学版), 2023, 61(4): 10-17. |
[13] | 黄珊,娄能俊,韩晓琳,梁中昊,华梦羽,庄向华,陈诗鸿. 高糖环境下Lipin1对神经元代谢组学的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 1-8. |
[14] | 王陆敏,周士英,黄启坤,刘艳丽. DNAH5基因新发突变致原发性纤毛运动障碍1例[J]. 山东大学学报 (医学版), 2022, 60(8): 103-108. |
[15] | 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12. |
|