山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (12): 1-10.doi: 10.6040/j.issn.1671-7554.0.2024.0846
• 药物临床研究与评价 •
徐新军1*,邵丽婷1*,陈颖2,刘会芳2,杨玉娟1,张宇1,王浛睿1,宋西成1
XU Xinjun1*, SHAO Liting1*, CHEN Ying2, LIU Huifang2, YANG Yujuan1, ZHANG Yu1, WANG Hanrui1, SONG Xicheng1
摘要: 目的 分析奥马珠单抗类似药(SYN008)对过敏性哮喘模型小鼠的疗效及与奥马珠单抗原创药(Xolair®)的疗效比较,为SYN008临床应用提供依据。 方法 将40只健康BALB/c小鼠随机分为4个组,每组10只。第Ⅰ组为对照组,第Ⅱ~Ⅳ组采用卵清蛋白(ovalbumin, OVA)——氢氧化铝腹腔注射诱发哮喘,且Ⅲ组和Ⅳ组分别用Xolair®(200 μg/只)和SYN008(200 μg/只)腹腔注射。造模完成后检测各组小鼠血清IgE及肺泡灌洗液(broncho alveolar lavage fluid, BALF)中2型辅助性T细胞(T helper 2 cell, Th2)细胞因子变化;通过苏木素-伊红(hematoxylin-eosin, HE)染色、过碘酸-雪夫(peroxynitrite-schiff, PAS)染色和马松三色(Massons trichrome, Masson)染色观察小鼠肺组织病理变化;并通过实时荧光定量聚合酶链式反应(quantitative real-time PCR, RT-qPCR)、酶联免疫吸附实验(enzyme linked immunosorbent assay, ELISA)、免疫印迹(western blotting, WB)和免疫组化法检测肺组织中转化生长因子β1(transforming growth factor beta 1, TGF-β1)、磷酸化Smad家族成员3(phosphorylated Smad family member 3, P-smad3)和Smad家族成员3(Smad3)、胶原蛋白Ⅲ(collagen Ⅲ, COL3)和黏蛋白(mucin 5AC, MUC5AC)的表达情况。 结果 与对照组比较,哮喘组小鼠血清IgE和BALF中白细胞介素-4(interleukin 4,IL-4)、IL-5和IL-13含量明显升高(P均<0.001);与Ⅱ组比较,Ⅲ组和Ⅳ组小鼠血清IgE和BALF中IL-4/5/13含量都明显下降(P<0.001,P<0.05,P<0.01,P<0.05;P<0.001,P<0.05,P<0.05,P<0.05);HE、PAS和Masson染色证实了Xolair®和SYN008可有效减少哮喘小鼠炎细胞聚集、气道杯状细胞化生和胶原沉积,并且两者可以通过抑制肺组织的TGF-β1、P-smad3/Smad3、COL3和MUC5AC减轻气道重塑,且两组各项检测指标均无统计学差异。 结论 SYN008可以改善小鼠的过敏性哮喘,且与Xolair®药效一致,未来有望应用于临床有效治疗过敏性哮喘。
中图分类号:
[1] Patadia R, Casale TB, Fowler J, et al. Advancements in biologic therapy in eosinophilic asthma[J]. Expert Opin Biol Ther, 2024, 24(4): 251-261. [2] Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485. [3] 张韵秋,任秀敏,徐鸥,等.奥马珠单抗靶向治疗慢性鼻窦炎伴鼻息肉的研究进展[J/OL].山东大学耳鼻喉眼学报,1-9[2024-10-02]. http://kns.cnki.net/kcms/detail/37.1437.R.20240408.1519.006.html. ZHANG Yunqiu, REN Xiumin, XU Ou, et al. Research progress on omalizumab targeted therapy for chronic sinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University,1-9[2024-10-02]. http://kns.cnki.net/kcms/detail/37.1437.R.20240408.1519.006.html. [4] Grzela K, Litwiniuk M, Zagorska W, et al. Airway remodeling in chronic obstructive pulmonary disease and asthma: the role of matrix metalloproteinase-9[J]. Arch Immunol Ther Exp, 2016, 64(1): 47-55. [5] Savin IA, Zenkova MA, Senkova AV. Bronchial asthma, airway remodeling and lung fibrosis as successive steps of one process[J]. Int J Mol Sci, 2023, 24(22): 16042. doi:10.3390/ijms242216042. [6] Niespodziana K, Borochova K, Pazderova P, et al. Toward personalization of asthma treatment according to trigger factors[J]. J Allergy Clin Immunol, 2020, 145(6): 1529-1534. [7] Chase NM, Littlejohn M, Holweg CTJ, et al. Effectiveness of omalizumab across different dosing regimens in patients with moderate-to-severe allergic asthma[J]. Respir Med, 2024, 223: 107537. doi:10.1016/j.rmed.2024.107537. [8] Liao JY, Tang J, Jiang YP, et al. Effects of omalizumab on lung function in patients with moderate-to-severe allergic asthma: a systematic review and meta-analysis[J]. Ther Adv Respir Dis, 2024, 18: 17534666231221771. doi:10.1177/17534666231221771. [9] Qin ZW, Chen YJ, Liu N, et al. Mechanisms of Bushenyiqi Decoction in the treatment of asthma: an investigation based on network pharmacology with experimental validation[J]. Front Pharmacol, 2024, 15: 1361379. doi:10.3389/fphar.2024.1361379. [10] 王瑞茵, 李红雯, 张清, 等. 青蒿琥酯对哮喘小鼠气道反应性和气道炎症的影响[J]. 中华医学杂志, 2019, 99(32): 2536-2541. WANG Ruiyin, LI Hongwen, ZHANG Qing, et al. Effect of artesunate on airway responsiveness and airway inflammation in asthmatic mice[J]. National Medical Journal of China, 2019, 99(32): 2536-2541. [11] 孙丛丛,崔文静,张锦涛,等.铁死亡在支气管哮喘气道重塑中的作用[J].山东大学学报(医学版), 2024, 62(7): 1-9. SUN Congcong, CUI Wenjing, ZHANG Jintao, et al. Roles of ferroptosis in asthmatic airway remodeling[J]. Journal of Shandong University(Health Sciences), 2024, 62(7): 1-9. [12] 张越,佟训靓,李艳,等.奥马珠单抗对过敏性哮喘小鼠气道重塑的影响[J].临床药物治疗杂志, 2022, 20(7): 40-45. ZHANG Yue, TONG Xunliang, LI Yan, et al. Effects of Omalizumab on airway remodeling in allergic asthma mouse[J]. Clinical Medication Journal, 2022, 20(7): 40-45. [13] Ren C, Mou YK, Song XY, et al. P2X7 receptor of microglia in olfactory bulb mediates the pathogenesis of olfactory dysfunction in a mouse model of allergic rhinitis[J]. Faseb J, 2023, 37(6): e22955. doi:10.1096/fj.202300160RR. [14] Zhang FQ, Han XP, Zhang F, et al. Therapeutic efficacy of a co-blockade of IL-13 and IL-25 on airway inflammation and remodeling in a mouse model of asthma[J]. Int Immunopharmacol, 2017, 46: 133-140. doi:10.1016/j.intimp.2017.03.005. [15] Zhang MY, Lin JT, Zhang JY, et al. Artesunate inhibits airway remodeling in asthma via the MAPK signaling pathway[J]. Front Pharmacol, 2023, 14: 1145188. doi:10.3389/fphar.2023.1145188. [16] Ma WX, Jin QY, Guo HQ, et al. Metformin ameliorates inflammation and airway remodeling of experimental allergic asthma in mice by restoring AMPKα activity[J]. Front Pharmacol, 2022, 13: 780148. doi:10.3389/fphar.2022.780148. [17] Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, et al. Severe asthma and biological therapies: now and the future[J]. J Clin Med, 2023, 12(18): 5846. doi:10.3390/jcm12185846. [18] 奥马珠单抗治疗过敏性哮喘专家组,中华医学会呼吸病学分会哮喘学组.奥马珠单抗治疗过敏性哮喘的中国专家共识[J]. 中华结核和呼吸杂志, 2018, 41(3):179-185. [19] Vignola AM, Humbert M, Bousquet J, et al. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: solar[J]. Allergy, 2004, 59(7): 709-717. [20] Velling P, Skowasch D, Pabst S, et al. Improvement of quality of life in patients with concomitant allergic asthma and atopic dermatitis: one year follow-up of omalizumab therapy[J]. Eur J Med Res, 2011, 16(9): 407-410. [21] Kraik K, Tota M, Laska J, et al. The role of transforming growth factor-β(TGF-β)in asthma and chronic obstructive pulmonary disease(COPD)[J]. Cells, 2024, 13(15): 1271. doi:10.3390/cells13151271. [22] Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: targeting IgE, cytokine, and alarmin pathways[J]. Immunol Rev, 2024:19. doi:10.1111/imr.13380. [23] Pelaia G, Gallelli L, Renda T, et al. Update on optimal use of omalizumab in management of asthma[J]. J Asthma Allergy, 2011, 4: 49-59. doi:10.2147/JAA.S14520. [24] Cilli A, Uzer F, Ozbey G. Clinical remission maintained and improved over time in patients with severe asthma treated with omalizumab[J]. J Asthma, 2024, 61(11): 1469-1476. [25] Ghanei M, Ghalebaghi B, Sami R, et al. Efficacy and safety of a proposed omalizumab biosimilar compared to the reference product in the management of uncontrolled moderate-to-severe allergic asthma: a multicenter, phase III, randomized, double-blind, equivalency clinical trial[J]. Front Immunol, 2024, 15: 1425906. doi:10.3389/fimmu.2024.1425906. [26] Long C, Sun CH, Lin H, et al. Efficacy and safety of subcutaneous immunotherapy combined with omalizumab in children with dust mite-induced asthma[J]. J Asthma, 2024, 61(11): 1561-15670. [27] 柳杉杉,申昆玲. 从IgE发现到抗IgE抗体产生看哮喘的生物治疗趋势[J]. 中华实用儿科临床杂志, 2021, 36(12): 902-907. LIU Shanshan, SHEN Kunling. Biotherapy trends in asthma: from the discovery of IgE to anti-IgE antibody production[J]. Chinese Journal of Applied Clinical Pediatrics, 2021, 36(12): 902-907. [28] Yan HC, Sun L, Ni YM, et al. Effective omalizumab treatment influenced eosinophil function in severe allergic asthmatics[J]. J Thorac Dis, 2023, 15(6): 3115-3125. [29] Couillard S, Jackson DJ, Pavord ID, et al. Choosing the right biologic for the right patient with severe asthma[J]. Chest, 2024, 6: S0012-3692(24)05139-0. doi:10.1016/j.chest.2024.08.045. [30] 杨文平,李刚,亓玉心,等.奥马珠单抗对支气管哮喘大鼠肺功能及气道重塑的影响及机制研究[J].中国现代医学杂志, 2023, 33(14): 16-21. YANG Wenping, LI Gang, QI Yuxin, et al. Effects of omalizumab on pulmonary function and airway remodeling in asthmatic rats and the underlying mechanisms[J]. China Journal of Modern Medicine, 2023, 33(14): 16-21. [31] 周进,王文杰,丁静,等.荆僵白果膏联合奥马珠单抗治疗老年支气管哮喘患者的效果及其对气道重塑和气道炎症的影响[J].实用心脑肺血管病杂志, 2024, 32(7): 101-105. ZHOU Jin, WANG Wenjie, DING Jing, et al. Effect of jingjiang baiguo ointment combined with omacizumab in the treatment of elderly patients with bronchial asthma and its impact on airway remodeling and airway inflammation[J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2024, 32(7): 101-105. [32] Song YL, Wang ZG, Jiang JZ, et al. DEK-targeting aptamer DTA-64 attenuates bronchial EMT-mediated airway remodelling by suppressing TGF-β1/Smad, MAPK and PI3K signalling pathway in asthma[J]. J Cell Mol Med, 2020, 24(23): 13739-13750. [33] 蔡秋景,张倩,何学佳,等.气道平滑肌细胞通过TGF-β1/Smad3信号通路调节IL-33的表达参与哮喘[J].山东大学学报(医学版), 2020, 58(4): 78-83. CAI Qiujing, ZHANG Qian, HE Xuejia, et al. Airway smooth muscle cells regulate IL-33 expression through TGF-β1/Smad3 signaling pathway to participate in asthma[J]. Journal of Shandong University(Health Sciences), 2020, 58(4): 78-83. [34] Peng HY, Sun F, Jiang YX, et al. Semaphorin 7a aggravates TGF-β1-induced airway EMT through the FAK/ERK1/2 signaling pathway in asthma[J]. Front Immunol, 2023, 14: 1167605. doi:10.3389/fimmu.2023.1167605. [35] Wang YB, Yang HK, Su X, et al. TGF-β1/SMOC2/AKT and ERK axis regulates proliferation, migration, and fibroblast to myofibroblast transformation in lung fibroblast, contributing with the asthma progression[J]. Hereditas, 2021, 158(1): 47. doi:10.1186/s41065-021-00213-w. [36] Muhamad SA, Safuan S, Stanslas J, et al. Lignosus rhinocerotis extract ameliorates airway inflammation and remodelling via attenuation of TGF-β1 and Activin A in a prolonged induced allergic asthma model[J]. Sci Rep, 2023, 13(1): 18442. doi:10.1038/s41598-023-45640-z. [37] Fang YN, Jin WW, Guo Z, et al. Quercetin alleviates asthma-induced airway inflammation and remodeling through downregulating periostin via blocking TGF-β1/smad pathway[J]. Pharmacology, 2023, 108(5): 432-443. [38] Janulaityte I, Januskevicius A, Kalinauskaite-Zukauske V, et al. In vivo allergen-activated eosinophils promote collagen I and fibronectin gene expression in airway smooth muscle cells via TGF-β1 signaling pathway in asthma[J]. Int J Mol Sci, 2020, 21(5): 1837. doi:10.3390/ijms21051837. [39] Wu HY, Wang D, Shi H, et al. PM2.5 and water-soluble components induce airway fibrosis through TGF-β1/Smad3 signaling pathway in asthmatic rats[J]. Mol Immunol, 2021, 137: 1-10. doi:10.1016/j.molimm.2021.06.005. [40] He HJ, Cao LH, Wang Z, et al. Sinomenine relieves airway remodeling by inhibiting epithelial-mesenchymal transition through downregulating TGF-β1 and Smad3 expression in vitro and in vivo[J]. Front Immunol, 2021, 12: 736479. doi:10.3389/fimmu.2021.736479. [41] Bonser LR, Erle DJ. Airway mucus and asthma: the role of MUC5AC and MUC5B[J]. J Clin Med, 2017, 6(12): 112. doi:10.3390/jcm6120112. [42] Boomer J, Choi J, Alsup A, et al. Increased Muc5AC and decreased ciliated cells in severe asthma partially restored by inhibition of IL-4Rα receptor[J]. Am J Respir Crit Care Med, 2024: 27. doi:10.1164/rccm.202307-1266OC. [43] Jia ZR, Bao KF, Wei P, et al. EGFR activation-induced decreases in claudin1 promote MUC5AC expression and exacerbate asthma in mice[J]. Mucosal Immunol, 2021, 14(1): 125-134. [44] Dai JH, Ma B, Wen XL, et al. Upregulation of miR-92a contributes to blocking goblet cell metaplasia by targeting MUC5AC in asthma[J]. J Recept Signal Transduct, 2020, 40(6): 613-619. [45] Gao QQ, Feng CR, Shi Q, et al. Guishaozichuan granules can attenuate asthma in rats via the MUC5AC/EGFR signaling pathway[J].Front Pharmacol, 2022, 13: 1011751. doi:10.3389/fphar.2022.1011751. [46] Zuberbier T, Ensina LF, Giménez-Arnau A, et al. Chronic urticaria: unmet needs, emerging drugs, and new perspectives on personalised treatment[J]. Lancet, 2024, 404(10450): 393-404. [47] Anagnostou A, Greenhawt M, Shaker M, et al. Food allergy yardstick: where does omalizumab fit?[J]. Ann Allergy Asthma Immunol, 2024: S1081-S1206(24)00494-0. doi:10.1016/j.anai.2024.07.034. [48] Halken S, Larenas-Linnemann D, Roberts G, et al. EAACI guidelines on allergen immunotherapy: prevention of allergy[J]. Pediatr Allergy Immunol, 2017, 28(8): 728-745. [49] Gasser P, Tarchevskaya SS, Guntern P, et al. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab[J]. Nat Commun, 2020, 11(1): 165. doi:10.1038/s41467-019-13815-w. [50] Maurer M, Saini SS, McLendon K, et al. Pharmacokinetic equivalence of CT-P39 and reference omalizumab in healthy individuals: a randomised, double-blind, parallel-group, Phase 1 trial[J]. Clin Transl Allergy, 2022, 12(11): e12204. doi:10.1002/clt2.12204. [51] Zhou B, Lin BR, Li J, et al. Tolerability, pharmacokinetics and pharmacodynamics of CMAB007, a humanized anti-immunoglobulin E monoclonal antibody, in healthy Chinese subjects[J]. MAbs, 2012, 4(1): 110-119. [52] Namakanova OA, Gorshkova EA, Zvartsev RV, et al. Therapeutic potential of combining IL-6 and TNF blockade in a mouse model of allergic asthma[J]. Int J Mol Sci, 2022, 23(7): 3521. doi:10.3390/ijms23073521. [53] Mahmutovic Persson I, Menzel M, Ramu S, et al. IL-1β mediates lung neutrophilia and IL-33 expression in a mouse model of viral-induced asthma exacerbation[J]. Respir Res, 2018, 19(1): 16. doi:10.1186/s12931-018-0725-z. |
[1] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
[2] | 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98. |
[3] | 刘绍庭,张薇薇,冉茜,王建. 食品乳化剂与肠道健康[J]. 山东大学学报 (医学版), 2024, 62(8): 18-26. |
[4] | 孙丛丛,崔文静,张锦涛,张东,刘晓菲,潘云,亓倩,徐嘉蔚,曾荣,郭红喜,董亮. 铁死亡在支气管哮喘气道重塑中的作用[J]. 山东大学学报 (医学版), 2024, 62(7): 1-9. |
[5] | 孙丽娜,白红艳,牛宗格,张福帅,曲仪庆. 基于SII构建及评价预测ARDS住院死亡率的在线临床风险模型[J]. 山东大学学报 (医学版), 2024, 62(7): 10-20. |
[6] | 田丽君,桑玉洁,孙瑜婧,韩冰,秦成勇,祁建妮. 全身免疫炎症指数对原发性肝癌患者免疫检查点抑制剂治疗相关不良反应的预测价值[J]. 山东大学学报 (医学版), 2024, 62(6): 48-53. |
[7] | 沈海涛,乔亚琴,董萍,路燕. Toll样受体4调控的程序性坏死和铁死亡对对乙酰氨基酚肝损伤的影响[J]. 山东大学学报 (医学版), 2024, 62(4): 1-8. |
[8] | 杨晓喆,赵妍,青卉,王向东,张罗. 大气细颗粒物通过TLR4/NF-κB通路诱导鼻黏膜上皮细胞炎症反应[J]. 山东大学学报 (医学版), 2023, 61(9): 47-55. |
[9] | 刘金波,刘凯文,向崇鑫,程雷. 西红花苷对椎间盘退变的保护作用[J]. 山东大学学报 (医学版), 2023, 61(9): 84-93. |
[10] | 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26. |
[11] | 步美玲,王金荣,冯梅,孙立锋. FOXM1在呼吸道病毒感染致哮喘小鼠急性发作中的机制[J]. 山东大学学报 (医学版), 2023, 61(6): 1-9. |
[12] | 赵元元,路军涛,吴小华. 人脐带间充质干细胞外泌体miR-100对多囊卵巢综合征患者颗粒细胞炎症的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 51-58. |
[13] | 王振华,宋晗,韦铎亮,李博文,徐凯,房长存,赵鑫. 急性B型主动脉夹层Castor单分支支架置入术后近端主动脉的早期重塑[J]. 山东大学学报 (医学版), 2023, 61(2): 36-42. |
[14] | 杨元凤,熊高才,黎豫川,罗玉玲,张敬杰. 鹿苓安肾颗粒对慢性肾功能衰竭大鼠炎症反应及细胞凋亡的影响[J]. 山东大学学报 (医学版), 2023, 61(10): 9-16. |
[15] | 张凤,吴哲,徐俊,刘玉兰. 6例非酒精性脂肪性肝病小鼠肠道B细胞的变化[J]. 山东大学学报 (医学版), 2022, 60(9): 67-73. |
|