您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (5): 7-15.doi: 10.6040/j.issn.1671-7554.0.2024.0137

• 慢性气道疾病的精准个体化诊疗——专家综述 • 上一篇    

慢性阻塞性肺疾病近年临床研究热点

王凤燕1,梁振宇1,李雪萍1,陈荣昌1,2   

  1. 1.广州医科大学附属第一医院呼吸与危重症医学科 广州呼吸健康研究院 国家呼吸系统疾病临床医学研究中心 呼吸疾病全国重点实验室, 广东 广州 510120;2.深圳市人民医院呼吸与危重症医学科 深圳呼吸疾病研究所, 广东 深圳 518020
  • 发布日期:2024-05-29
  • 通讯作者: 陈荣昌. E-mail:chenrc@vip.163.com
  • 基金资助:
    国家重点研发计划(2022YFF0710802);国家自然科学基金(82200044,82270044,82170042);深圳市科创委可持续发展专项(KCXFZ202002011008256);呼吸疾病国家重点实验室自主课题(SKLRD-Z-202317)

Clinical research hotspots of chronic obstructive pulmonary disease in recent years

WANG Fengyan1, LIANG Zhenyu1, LI Xueping1, CHEN Rongchang1,2   

  1. 1. Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China;
    2. Department of Respiratory and Critical Care Medicine, Institute of Shenzhen Respiratory Diseases, Shenzhen Peoples Hospital, Shenzhen 518020, Guangdong, China
  • Published:2024-05-29

摘要: 慢性阻塞性肺疾病(简称慢阻肺)是最常见的慢性呼吸系统疾病,因其致残和致死性而备受关注。近年来对其临床研究取得了诸多重要进展。早期诊断和筛查工具的发展,以及基于肺功能发展轨迹、影像学评估和基因表达特征的多维度分型,为慢阻肺的个体化治疗提供了依据。多组学研究在探索慢阻肺生物标志物方面取得重要突破,有助于深入理解疾病的发病机制和病程发展。吸入药物方案的疗效比较和靶向2型炎症的单克隆抗体疗效研究也在不断推进,以期为慢阻肺患者提供更多针对发病机制的个体化治疗手段。

关键词: 肺疾病,慢性阻塞性, 临床研究热点, 表型, 个体化治疗

Abstract: Chronic obstructive pulmonary disease(COPD)is the most common chronic respiratory disease, and has attracted much attention because of its disabling and fatal nature. Many important advances in clinical research have been made in recent years. The development of early diagnostic and screening tools, as well as multidimensional phenotyping based on lung function trajectories, quantitative imaging assessments and gene signature, have informed individualized treatment of COPD. Multi-omics studies have made important breakthroughs in exploring biomarkers of COPD, contributing to an in-depth understanding of the pathogenesis and progression of the disease. The comparisons of inhaled drug regimens and the efficacy of monoclonal antibodies targeting type 2 inflammation are also advancing, with a view to providing more individualized treatments for patients with COPD by targeting the pathogenesis of the disease.

Key words: Pulmonary disease, chronic obstructive, Clinical research hotspots, Phenotype, Individualized treatment

中图分类号: 

  • R574
[1] Li XC, Cao XP, Guo MZ, et al. Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: systematic analysis for the Global Burden of Disease Study 2017[J]. BMJ, 2020, 368: m234. doi:10.1136/bmj.m234.
[2] Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary diseas(2011 report)[EB/OL].(2011-12-01)[2024-01-30]. https://goldcopd.org/.
[3] Divo MJ, Liu CJ, Polverino F, et al. From pre-COPD to COPD: a simple, low cost and easy to IMplement(SLIM)risk calculator[J]. Eur Respir J, 2023, 62(3): 2300806. doi:10.1183/13993003.00806-2023.
[4] Young AL, Bragman FJS, Rangelov B, et al. Disease progression modeling in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2020, 201(3): 294-302.
[5] Moll M, Sakornsakolpat P, Shrine N, et al. Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts[J]. Lancet Respir Med, 2020, 8(7): 696-708.
[6] Cosentino J, Behsaz B, Alipanahi B, et al. Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk models[J]. Nat Genet, 2023, 55(5): 787-795.
[7] Martinez FJ, Han MK, Lopez C, et al. Discriminative accuracy of the CAPTURE tool for identifying chronic obstructive pulmonary disease in US primary care settings[J]. JAMA, 2023, 329(6): 490-501.
[8] Siddharthan T, Pollard SL, Quaderi SA, et al. Discriminative accuracy of chronic obstructive pulmonary disease screening instruments in 3 low- and middle-income country settings[J]. JAMA, 2022, 327(2): 151-160.
[9] Huynh C, Whitmore GA, Vandemheen KL, et al. Derivation and validation of the UCAP-Q case-finding questionnaire to detect undiagnosed asthma and COPD[J]. Eur Respir J, 2022, 60(3): 2103243. doi:10.1183/13993003.03243-2021.
[10] Liang ZY, Zhong NS, Chen RC, et al. Investigation of the Clinical, Radiological and Biological Factors Associated with Disease Progression, Phenotypes and Endotypes of COPD in China(COMPASS): study design, protocol and rationale[J]. ERJ Open Res, 2021, 7(3): 00201-02021.
[11] Li Y, Wen FQ, Ma QL, et al. Use of CAPTURE to identify individuals who may or may not require treatment for chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2023, 208(4): 435-441.
[12] Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary diseas(2022 report)[EB/OL].(2021-11-17)[2024-01-30]. https://goldcopd.org/.
[13] Martinez FJ, Han MK, Allinson JP, et al. At the root: defining and halting progression of early chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2018, 197(12): 1540-1551.
[14] Çolak Y, Afzal S, Nordestgaard BG, et al. Prevalence, characteristics, and prognosis of early chronic obstructive pulmonary disease. The Copenhagen general population study[J]. Am J Respir Crit Care Med, 2020, 201(6): 671-680.
[15] Çolak Y, Afzal S, Nordestgaard BG, et al. Importance of early COPD in young adults for development of clinical COPD: findings from the Copenhagen general population study[J]. Am J Respir Crit Care Med, 2021, 203(10): 1245-1256.
[16] Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary diseas(2023 report)[EB/OL].(2022-11-14)[2023-03-30]. https://goldcopd.org/.
[17] Lange P, Celli B, Agustí A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease[J]. N Engl J Med, 2015, 373(2): 111-122.
[18] Marott JL, Ingebrigtsen TS, Çolak Y, et al. Lung function trajectories leading to chronic obstructive pulmonary disease as predictors of exacerbations and mortality[J]. Am J Respir Crit Care Med, 2020, 202(2): 210-218.
[19] Bui DS, Lodge CJ, Burgess JA, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life[J]. Lancet Respir Med, 2018, 6(7): 535-544.
[20] Dharmage SC, Bui DS, Walters EH, et al. Lifetime spirometry patterns of obstruction and restriction, and their risk factors and outcomes: a prospective cohort study[J]. Lancet Respir Med, 2023, 11(3): 273-282.
[21] Park J, Hobbs BD, Crapo JD, et al. Subtyping COPD by using visual and quantitative CT imaging features[J]. Chest, 2020, 157(1): 47-60.
[22] Bodduluri S, Kizhakke Puliyakote A, Nakhmani A, et al. Computed tomography-based airway surface area-to-volume ratio for phenotyping airway remodeling in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2021, 203(2): 185-191.
[23] Diaz AA, Orejas JL, Grumley S, et al. Airway-occluding mucus plugs and mortality in patients with chronic obstructive pulmonary disease[J]. JAMA, 2023, 329(21): 1832-1839.
[24] Pistenmaa CL, Nardelli P, Ash SY, et al. Pulmonary arterial pruning and longitudinal change in percent emphysema and lung function: the genetic epidemiology of COPD study[J]. Chest, 2021, 160(2): 470-480.
[25] Christenson SA, van den Berge M, Faiz A, et al. An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup[J]. J Clin Invest, 2019, 129(1): 169-181.
[26] Zhang JZ, Xu HF, Qiao DD, et al. A polygenic risk score and age of diagnosis of COPD[J]. Eur Respir J, 2022, 60(3): 2101954. doi:10.1183/13993003.01954-2021.
[27] Moll M, Lutz SM, Ghosh AJ, et al. Relative contributions of family history and a polygenic risk score on COPD and related outcomes: COPDGene and ECLIPSE studies[J]. BMJ Open Respir Res, 2020, 7(1): e000755. doi:10.1136/bmjresp-2020-000755.
[28] Moll M, Boueiz A, Ghosh AJ, et al. Development of a blood-based transcriptional risk score for chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2022, 205(2): 161-170. doi:10.1164/rccm.202107-1584OC.
[29] Wang Z, Locantore N, Haldar K, et al. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis[J]. Am J Respir Crit Care Med, 2021, 203(12): 1488-1502.
[30] Yan ZZ, Chen BX, Yang YQ, et al. Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions[J]. Nat Microbiol, 2022, 7(9): 1361-1375.
[31] Calzetta L, Rogliani P, Matera MG, et al. A systematic review with meta-analysis of dual bronchodilation with LAMA/LABA for the treatment of stable COPD[J]. Chest, 2016, 149(5): 1181-1196.
[32] Oba Y, Sarva ST, Dias S. Efficacy and safety of long-acting β-agonist/long-acting muscarinic antagonist combinations in COPD: a network meta-analysis[J]. Thorax, 2016, 71(1): 15-25.
[33] Donohue JF, Jones PW, Bartels C, et al. Correlations between FEV1 and patient-reported outcomes: a pooled analysis of 23 clinical trials in patients with chronic obstructive pulmonary disease[J]. Pulm Pharmacol Ther, 2018, 49: 11-19. doi:10.1016/j.pupt.2017.12.005.
[34] Maltais F, Bjermer L, Kerwin EM, et al. Efficacy of umeclidinium/vilanterol versus umeclidinium and salmeterol monotherapies in symptomatic patients with COPD not receiving inhaled corticosteroids: the EMAX randomised trial[J]. Respir Res, 2019, 20(1): 238. doi:10.1186/s12931-019-1193-9.
[35] Ray R, Tombs L, Naya I, et al. Efficacy and safety of the dual bronchodilator combination umeclidinium/vilanterol in COPD by age and airflow limitation severity: a pooled post hoc analysis of seven clinical trials[J]. Pulm Pharmacol Ther, 2019, 57: 101802. doi:10.1016/j.pupt.2019.101802.
[36] Ferguson GT, Rabe KF, Martinez FJ, et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease(KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial[J]. Lancet Respir Med, 2018, 6(10): 747-758.
[37] Muro S, Sugiura H, Darken P, et al. Efficacy of budesonide/glycopyrronium/formoterol metered dose inhaler in patients with COPD: post-hoc analysis from the KRONOS study excluding patients with airway reversibility and high eosinophil counts[J]. Respir Res, 2021, 22(1): 187. doi:10.1186/s12931-021-01773-1.
[38] Rabe KF, Martinez FJ, Ferguson GT, et al. Triple inhaled therapy at two glucocorticoid doses in moderate-to-very-severe COPD[J]. N Engl J Med, 2020, 383(1): 35-48.
[39] Martinez FJ, Rabe KF, Ferguson GT, et al. Reduced all-cause mortality in the ETHOS trial of budesonide/glycopyrrolate/formoterol for chronic obstructive pulmonary disease. A randomized, double-blind, multicenter, parallel-group study[J]. Am J Respir Crit Care Med, 2021, 203(5): 553-564.
[40] Lipson DA, Barnhart F, Brealey N, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD[J]. N Engl J Med, 2018, 378(18): 1671-1680.
[41] Halpin DMG, Dransfield MT, Han MK, et al. The effect of exacerbation history on outcomes in the IMPACT trial[J]. Eur Respir J, 2020, 55(5): 1901921. doi:10.1183/13993003.01921-2019.
[42] Lipson DA, Crim C, Criner GJ, et al. Reduction in all-cause mortality with fluticasone furoate/umeclidinium/vilanterol in patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2020, 201(12): 1508-1516.
[43] Han MK, Criner GJ, Dransfield MT, et al. The effect of inhaled corticosteroid withdrawal and baseline inhaled treatment on exacerbations in the IMPACT study. A randomized, double-blind, multicenter clinical trial[J]. Am J Respir Crit Care Med, 2020, 202(9): 1237-1243.
[44] Calzetta L, Cazzola M, Matera MG, et al. Adding a LAMA to ICS/LABA therapy: a meta-analysis of triple combination therapy in COPD[J]. Chest, 2019, 155(4): 758-770.
[45] Suissa S, DellAniello S, Ernst P. Comparative effects of LAMA-LABA-ICS vs LAMA-LABA for COPD: cohort study in real-world clinical practice[J]. Chest, 2020, 157(4): 846-855.
[46] Pascoe S, Barnes N, Brusselle G, et al. Blood eosinophils and treatment response with triple and dual combination therapy in chronic obstructive pulmonary disease: analysis of the IMPACT trial[J]. Lancet Respir Med, 2019, 7(9): 745-756.
[47] Kerkhof M, Voorham J, Dorinsky P, et al. Association between COPD exacerbations and lung function decline during maintenance therapy[J]. Thorax, 2020, 75(9): 744-753.
[48] Bafadhel M, Peterson S, De Blas MA, et al. Predictors of exacerbation risk and response to budesonide in patients with chronic obstructive pulmonary disease: a post-hoc analysis of three randomised trials[J]. Lancet Respir Med, 2018, 6(2): 117-126.
[49] Martinez-Garcia MA, Faner R, Oscullo G, et al. Inhaled steroids, circulating eosinophils, chronic airway infection, and pneumonia risk in chronic obstructive pulmonary disease. A network analysis[J]. Am J Respir Crit Care Med, 2020, 201(9): 1078-1085.
[50] Yun JH, Lamb A, Chase R, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2018, 141(6): 2037-2047.e10.
[51] Criner GJ, Celli BR, Brightling CE, et al. Benralizumab for the prevention of COPD exacerbations[J]. N Engl J Med, 2019, 381(11): 1023-1034.
[52] Criner GJ, Celli BR, Singh D, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies[J]. Lancet Respir Med, 2020, 8(2): 158-170.
[53] Le Floch A, Allinne J, Nagashima K, et al. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation[J]. Allergy, 2020, 75(5): 1188-1204.
[54] Bhatt SP, Rabe KF, Hanania NA, et al. Dupilumab for COPD with type 2 inflammation indicated by eosinophil counts[J]. N Engl J Med, 2023, 389(3): 205-214.
[1] 刘超,刁婷婷,张红吉,刘红伟,杨永锐,李晓非. 飞行时间质谱在耐药结核病检测中的应用价值[J]. 山东大学学报 (医学版), 2024, 62(4): 61-67.
[2] 徐洪波,胡仁琴,田茂强,冉潇,陈艳. PIK3CD基因杂合突变所致新表型——系统性红斑狼疮[J]. 山东大学学报 (医学版), 2023, 61(1): 113-117.
[3] 周娜,潘英芳,邵静茹,李京,宋永红,徐群,吕红娟. 山东省济南市RhD阴性无偿献血者表型分布调查及不规则抗体筛查的临床意义[J]. 山东大学学报 (医学版), 2022, 60(7): 98-103.
[4] 杨光,王向东,李思颖. 头帕肿瘤综合征蛋白在血管新生内膜形成及血管重构中的作用[J]. 山东大学学报 (医学版), 2019, 57(12): 37-45.
[5] 王波,薛江,刘爱虹,翟蕊蕊,王一彪. 雷帕霉素调控巨噬细胞表型改善肺动脉高压[J]. 山东大学学报 (医学版), 2018, 56(4): 51-57.
[6] 周兰兰,潘学谊,郭煜. 48例急性混合细胞表型白血病患者的临床特征及预后[J]. 山东大学学报(医学版), 2017, 55(2): 79-83.
[7] 王贲士, 单军奇,侯庆生,公为鹏,朱振宇,郭洪亮. CD11b+/CD66b-表型髓系细胞在结肠癌进展和肝转移中的作用[J]. 山东大学学报(医学版), 2017, 55(10): 41-45.
[8] 杨博,李平,孟立平,周昌钻,潘孙雷,池菊芳,郭航远. 依那普利抑制大鼠血管平滑肌细胞表型转化及可能的信号通路[J]. 山东大学学报(医学版), 2016, 54(2): 21-26.
[9] 黄芬,蒋钰 . IGT患者高甘油三酯血症-腰围表型与早期认知障碍的关系[J]. 山东大学学报(医学版), 2014, 52(3): 72-74.
[10] 郭晓宇1,高艳秋1,刘照旭2. 临床表型分类系统在门诊慢性前列腺炎患者中的应用[J]. 山东大学学报(医学版), 2014, 52(1): 62-66.
[11] 裴长安,秦士勇,陈士辉,张曙光. 下肢静脉曲张患者外周血Nelin水平测定及意义[J]. 山东大学学报(医学版), 2013, 51(9): 64-66.
[12] 徐慧1,王义国2,刘长虹2,刘倩2,杜娟3. HBV在HK-2细胞内的表达及对其转分化的影响[J]. 山东大学学报(医学版), 2013, 51(3): 15-20.
[13] 张倩1,2,钱粉红3,周林福4,韦国桢1,柏建岭5,殷凯生4,施毅2. TLR7/8基因多态性与江苏省汉族人群哮喘发病风险及严重度的关系[J]. 山东大学学报(医学版), 2013, 51(2): 93-98.
[14] 乔文婧1,郭农建1,丁卜同2,陈昀1,周亚伟1. HLA-DRB1*1501和TNF-α308位点基因多态性预测再生障碍性贫血免疫抑制疗法的疗效[J]. 山东大学学报(医学版), 2010, 48(7): 73-76.
[15] 孙磊1,吴静静2,易寿南2,陈丽1. 人CD4+CD25+调节性T细胞的体外培养扩增[J]. 山东大学学报(医学版), 2010, 48(12): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!