您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (12): 37-45.doi: 10.6040/j.issn.1671-7554.0.2019.1022

• 基础医学 • 上一篇    

头帕肿瘤综合征蛋白在血管新生内膜形成及血管重构中的作用

杨光1,王向东2,李思颖2   

  1. 1. 山东大学附属省立医院骨关节外科, 山东 济南 250021;2. 山东大学基础医学院生理与病理生理学系, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 李思颖. E-mail:lisiying@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81800353);山东大学基本科研业务费专项资金(2017GN0016)

Effects of cylindromatosis on vascular neointima formation and vascular remodeling

YANG Guang1, WANG Xiangdong2, LI Siying2   

  1. 1. Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China;
    2. Department of Physiology &
    Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨去泛素化酶头帕肿瘤综合征蛋白(CYLD)在血管新生内膜增生和血管平滑肌细胞表型(增殖、凋亡、炎症和分化)转化中的作用。 方法 利用 Cyld 基因敲除(Cyld-/-)小鼠,建立血管损伤(颈总动脉结扎)模型,通过病理染色及免疫组化检测血管新生内膜的形成(H&E、Van Gieson)、细胞增殖(Ki67)、凋亡(TUNEL)以及分化簇3(CD3)、单核细胞趋化蛋白1(MCP-1)的表达;通过qRT-PCR法检测颈动脉组织中炎性细胞因子如肿瘤坏死因子α(TNF-α)、白介素1β(IL-1β)、白介素6(IL-6)和抗炎细胞因子白介素10(IL-10)的表达。提取Cyld-/-小鼠的主动脉血管平滑肌细胞(VSMCs),利用免疫荧光验证CYLD的表达,并通过生长曲线和[3H]胸腺嘧啶摄取实验观察VSMCs的生长速度,通过单核细胞黏附实验观察TNFɑ作用下VSMCs对单核细胞(THP1)的黏附作用,采用Western blotting法检测VSMCs中表型相关蛋白α平滑肌肌动蛋白(α-SMA)和平滑肌22α(SM22α)的表达。 结果 颈总动脉结扎4周后,Cyld-/-小鼠的血管新生内膜增生及细胞增殖程度明显高于野生型(WT)小鼠(P<0.01);而新生内膜中细胞凋亡无明显差别。Cyld-/-小鼠血管新生内膜中CD3、MCP-1表达及促炎因子TNFɑ、IL-1β和IL-6表达高于WT小鼠,尤其是IL-6水平显著增加(P<0.01),而抗炎因子IL-10的表达Cyld-/-小鼠明显低于WT小鼠(P<0.01)。CYLD在Cyld-/-小鼠的VSMCs传代过程中持续低表达。Cyld-/-小鼠VSMCs的细胞增殖速度明显高于WT小鼠(P<0.05);在TNFɑ作用下,Cyld-/-小鼠VSMCs对THP-1的黏附作用明显高于WT小鼠(P<0.05);Cyld-/-小鼠VSMCs中表型相关蛋白α-SMA和SM22α的表达明显低于WT小鼠。 结论 在血管损伤过程中,去泛素化酶CYLD通过影响血管平滑肌细胞表型(增殖、凋亡、炎症和分化)转化,参与血管新生内膜的形成,从而在血管修复及重构中发挥关键作用。

关键词: 头帕肿瘤综合征蛋白, 血管平滑肌细胞, 表型转化, 新生内膜, 血管重构

Abstract: Objective To explore the role of cylindromatosis(CYLD)in vascular neointima formation and vascular smooth muscle cells phenotype transformation. Methods Cyld KO(Cyld-/-)mice were used to establish vascular injury models of carotid artery ligation. The neointima formation was observed with H&E and Van Gieson stainings. The cell apoptosis was examined with TUNEL staining, and cell proliferation and inflammation were detected with Ki67, cluster of differentiation 3(CD3)and monocyte chemoattractant protein-1(MCP-1)immunohistiochemistry, respectively. The mRNA expressions of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6)and interleukin-10(IL-10)were determined with qRT-PCR. Vascular smooth muscle cells(VSMCs)of the aortic artery 山 东 大 学 学 报 (医 学 版)57卷12期 -杨光,等. 头帕肿瘤综合征蛋白在血管新生内膜形成及血管重构中的作用 \=-were isolated from Cyld-/- mice. The CYLD expression was examined with immunofluorescence. The growth rate of VSMCs was observed with growth curve and 3H-thymidine intake assay. The effect of THP1 cells adhesion on VSMCs after TNF-ɑ stimulation was tested with monocyte adhesion assay. The expressions of alpha smooth muscle actin(α-SMA)and smooth muscle 22 alpha(SM22α)were measured with Western blotting. Results After carotid artery ligation for 4 weeks, the neointima formation and cell proliferation were more obvious in Cyld-/- mice than in wild type(WT)mice(P<0.01), while there was no significant difference in cell apoptosis. The expressions of CD3, MCP-1, TNF-ɑ, IL-1β and especially IL-6 were significantly higher in Cyld-/- mice than in WT mice(P<0.01), while the expression of IL-10 was significantly lower(P<0.01). CYLD had a low expression rate in cultured VSMCs. The proliferation rate of VSMCs was much higher in Cyld-/- mice than in WT mice. The adhesion effect of THP-1 was more obvious in Cyld-/- mice than in WT mice under TNF-ɑ stimulation(P<0.05). The expressions of α-SMA and SM22α were lower in Cyld-/- mice than in WT mice. Conclusion In vascular injury, CYLD is involved in vascular neointima formation by affecting vascular smooth muscle cells phenotype transformation and therefore plays an essential role in vascular remodeling.

Key words: Cylindromatosis, Vascular smooth muscle cells, Phenotypic transformation, Neointima, Vascular remodeling

中图分类号: 

  • R365
[1] Benjamin Ej, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the american heart association [J]. Circulation, 2019, 139(10): 56-528.
[2] Lacolley P, Regnault V, Segers P, et al. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease [J]. Physiol Rev, 2017, 97(4):1555-1617.
[3] Wang G, Jacquet L, Karamariti E, et al. Origin and differentiation of vascular smooth muscle cells [J]. J Physiol, 2015, 593(14): 3013-3030.
[4] 魏俊成, 贺福初, 王建. 去泛素化酶cyld[J]. 生命科学, 2013, 25(4): 352-357. WEI Juncheng, HE Fuchu, WANG Jian. CYLD: a deubiquitinase [J]. Chinese Bulletin of Life Sciences, 2013, 25(4): 352-357.
[5] Gao J, Sun L, Huo L, et al. Cyld regulates angiogenesis by mediating vascular endothelial cell migration [J]. Blood, 2010, 115(20): 4130-4137.
[6] Bignell Gr, Warren W, Seal S, et al. Identification of the familial cylindromatosis tumour-suppressor gene [J]. Nat Genet, 2000, 25(2): 160-165.
[7] Massoumi R. Ubiquitin chain cleavage: cyld at work[J]. Trends Biochem Sci, 2010, 35(7): 392-399.
[8] Mathis Bj, Lai Y, Qu C, et al. Cyld-mediated signaling and diseases[J]. Curr Drug Targets, 2015, 16(4): 284-294.
[9] Takami Y, Nakagami H, Morishita R, et al. Potential role of cyld(cylindromatosis)as a deubiquitinating enzyme in vascular cells[J]. Am J Pathol, 2008, 172(3): 818-829.
[10] Cui Tg, Ichikawa T, Yang M, et al. An emerging role of deubiquitinating enzyme cylindromatosis(cyld)in the tubulointerstitial inflammation of iga nephropathy[J]. Biochem Biophys Res Commun, 2009, 390(2): 307-312.
[11] Liu S, Lv J, Han L, et al. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis(cyld)in vascular smooth muscle cells[J]. Biochem Biophys Res Commun, 2012, 420(1): 78-83.
[12] Pseftogas A, Gonidas C, Mosialos G. Activation of peroxisome proliferator-activated receptor gamma in mammary epithelial cells upregulates the expression of tumor suppressor cyld to mediate growth inhibition and anti-inflammatory effects [J]. Int J Biochem Cell Biol, 2017, 82: 49-56. doi: 10.1016/j.biocel.2016.11.011.
[13] Klei Lr, Hu D, Panek R, et al. Malt1 protease activation triggers acute disruption of endothelial barrier integrity via cyld cleavage[J]. Cell Rep, 2016, 17(1): 221-232.
[14] 李秀丹, 石立力, 姜晓艳. 血管平滑肌细胞自噬与糖尿病动脉粥样硬化关系的研究进展[J]. 临床心血管病杂志, 2019, 35(1): 92-95. LI Xiudan,SHI Lili,JIANG Xiaoyan.Research progress in relationship between vascular smooth muscle cell autophagy and diabetic atherosclerosi[J]. Journal of Clinical Cardiology, 2019, 35(1): 92-95.
[15] Alexander Mr, Owens Gk. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease [J]. Annu Rev Physiol, 2012, 74: 13-40. doi: 10.1146/annurev-physiol-012110-142315.
[16] Davis-Dusenbery Bn, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation[J]. Arterioscler Thromb Vasc Biol, 2011, 31(11): 2370-2377.
[17] Gomez D, Owens Gk. Smooth muscle cell phenotypic switching in atherosclerosis [J]. Cardiovasc Res, 2012, 95(2): 156-164.
[18] Zheng X, Hu X, Zhang W. The phenotype of vascular smooth muscle cells co-cultured with endothelial cells is modulated by pdgfr-beta/iqgap1 signaling in lps-induced intravascular injury [J]. Int J Med Sci, 2019, 16(8): 1149-1156.
[19] Spin Jm, Maegdefessel L, Tsao Ps. Vascular smooth muscle cell phenotypic plasticity: focus on chromatin remodelling [J]. Cardiovasc Res, 2012, 95(2): 147-155.
[20] Shi N, Chen Sy. Smooth muscle cell differentiation: model systems, regulatory mechanisms, and vascular diseases [J]. J Cell Physiol, 2016, 231(4): 777-787.
[21] 毛志敏, 周如丹, 赵学凌, 等. Mcp-1在炎性反应中的研究进展[J]. 医学综述, 2013, 19(6): 964-966.
[22] Song H, Xu J, Lv N, et al. Irisin reverses platelet derived growth factor-bb-induced vascular smooth muscle cells phenotype modulation through stat3 signaling pathway [J]. Biochem Biophys Res Commun, 2016, 479(2): 139-145.
[23] 朱君, 胥虹贝, 周雪灵, 等. 过表达cyld对氧糖剥夺/复氧大鼠原代皮质神经元中nf-κb信号通路的影响[J]. 中国细胞生物学学报, 2019, 41(8): 1551-1557. ZHU Jun, XU Hongbei, ZHOU Xueling, et al. Effect of CYLD Overexpression on NF-κB Signaling Pathway after Oxygen-Glucose Deprivation/Reoxygenation in Rat Primary Cortical Neurons [J]. Chinese Journal of Cell Biology, 2019, 41(8): 1551-1557.
[24] Reiley W, Zhang M, Sun Sc. Negative regulation of jnk signaling by the tumor suppressor cyld [J]. J Biol Chem, 2004, 279(53): 55161-55167.
[25] Wang H, Lai Y, Mathis Bj, et al. Deubiquitinating enzyme cyld mediates pressure overload-induced cardiac maladaptive remodeling and dysfunction via downregulating nrf2 [J]. J Mol Cell Cardiol, 2015, 84: 143-153. doi: 10.1016/j.yjmcc.2015.04.012.
[1] 刘慧敏, 刘邓, 李晓宇, 邹淑奉, 姜黎民, 李玉环. 半边莲生物碱对肺动脉高压大鼠ET-1信号通路的影响[J]. 山东大学学报(医学版), 2015, 53(8): 1-4.
[2] 裴长安,秦士勇,陈士辉,张曙光. 下肢静脉曲张患者外周血Nelin水平测定及意义[J]. 山东大学学报(医学版), 2013, 51(9): 64-66.
[3] 王春晓,夏伟,李福海,武志华. 法舒地尔对野百合碱诱导肺动脉高压大鼠骨形态蛋白受体表达的影响[J]. 山东大学学报(医学版), 2013, 51(8): 28-33.
[4] 徐慧1,王义国2,刘长虹2,刘倩2,杜娟3. HBV在HK-2细胞内的表达及对其转分化的影响[J]. 山东大学学报(医学版), 2013, 51(3): 15-20.
[5] 李群锋. 雌激素受体对血管平滑肌细胞早衰的影响[J]. 山东大学学报(医学版), 2011, 49(4): 13-16.
[6] 郭雪峰1,张继东1,姜红2,王博1,任敏1,冯利1. 芩丹胶囊对高血压大鼠血管壁Ⅰ型胶原蛋白与mRNA表达的影响[J]. 山东大学学报(医学版), 2010, 48(8): 18-21.
[7] 李林1,陈晓锐2,宋莎莎1,焦玉莲1,马春燕1, 鞠远荣3,李建峰1. DDR2在Peroxynitrite诱导人中枢血管平滑肌细胞凋亡中的表达[J]. 山东大学学报(医学版), 2010, 48(6): 9-12.
[8] 席文锦1,王艳3,娄运伟1,张佳慧2,梁拓2,章桂忠1,张然熙2,刘素侠1. CPI-17调控血管平滑肌表型对动脉粥样硬化形成的影响[J]. 山东大学学报(医学版), 2010, 48(6): 13-.
[9] . RNA干扰沉默人血管平滑肌细胞胱抑素C基因表达及对组织蛋白酶S表达的影响[J]. 山东大学学报(医学版), 2009, 47(7): 49-53.
[10] . 内皮祖细胞与雌激素联合应用防止PCI术后再狭窄的研究[J]. 山东大学学报(医学版), 2009, 47(10): 39-44.
[11] 来丽萍,张继东,李丽珍,刘粉叶 . 益肾活血提取液对同型半胱氨酸所致的兔VSMCs增殖的抑制作用[J]. 山东大学学报(医学版), 2007, 45(10): 1011-1015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!