山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 97-102.doi: 10.6040/j.issn.1671-7554.0.2021.0826
石玉华,王秋敏,戚丹
SHI Yuhua, WANG Qiumin, QI Dan
摘要: 辅助生殖技术(ART)作为一项新兴学科在近几十年间飞速发展,不断在人类生殖健康领域获得突破性进展。新技术的研发和应用,应在合乎法律法规和伦理道德的基础上,以安全为前提,不断提高技术的有效性。近年来,为提高生殖健康水平,改善出生人口素质,胚胎植入前遗传学检测(PGT)、线粒体置换技术(MRT)、冻融胚胎移植(FET)以及细胞疗法成为生殖专家关注的重点内容,综述ART领域热点问题,分析其研究进展。
中图分类号:
[1] Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology[J]. Clin Biochem, 2018, 62: 2-10. doi:10.1016/j.clinbiochem.2018.03.012. [2] 刘淑文, 张淑霞, 刘玉双, 等. 不孕症的病因病机分析[J]. 实用妇科内分泌电子杂志, 2019, 6(12): 70. [3] De Geyter C. Assisted reproductive technology: impact on society and need for surveillance[J]. Best Pract Res Clin Endocrinol Metab, 2019, 33(1): 3-8. [4] 张燕, 言懿. 辅助生殖第一大国[J]. 中国经济周刊, 2021(11): 32-35. [5] Esteves SC, Humaidan P, Roque M, et al. Female infertility and assisted reproductive technology[J]. Panminerva Med, 2019, 61(1): 1-2. [6] 黄国宁. 2019年辅助生殖技术学科新进展[J]. 中华医学信息导报, 2020, 35(2): 17. [7] Brezina PR, Brezina DS, Kearns WG. Preimplantation genetic testing[J]. BMJ, 2012, 345: e5908. doi:10.1136/bmj.e5908. [8] Kuliev A, Rechitsky S. Preimplantation genetic testing: current challenges and future prospects[J]. Expert Rev Mol Diagn, 2017, 17(12): 1071-1088. [9] Greco E, Litwicka K, Minasi MG, et al. Preimplantation genetic tsting: where we are today[J]. Int J Mol Sci, 2020, 21(12): 4381. [10] 应瑛, 刘见桥. 以辅助生殖技术为基础的临床新技术的发展[J]. 实用妇产科杂志, 2020, 36(4): 251-253. [11] Takeuchi K. Pre-implantation genetic testing: past, present, future[J]. Reprod Med Biol, 2021, 20(1): 27-40. [12] Chen ZJ, Shi YH, Sun Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome[J]. N Engl J Med, 2016, 375(6): 523-533. [13] Shi YH, Sun Y, Hao CF, et al. Transfer of fresh versus frozen embryos in ovulatory women[J]. N Engl J Med, 2018, 378(2): 126-136. [14] Magli MC, Pomante A, Cafueri G, et al. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid?[J]. Fertil Steril, 2016, 105(3): 676-683. [15] Zhang Y, Li N, Wang L, et al. Molecular analysis of DNA in blastocoele fluid using next-generation sequencing[J]. J Assist Reprod Genet, 2016, 33(5): 637-645. [16] Capalbo A, Romanelli V, Patassini C, et al. Diagnostic efficacy of blastocoel fluid and spent media as sources of DNA for preimplantation genetic testing in standard clinical conditions[J]. Fertil Steril, 2018, 110(5): 870-879. [17] Ho JR, Arrach N, Rhodes-Long K, et al. Pushing the limits of detection: investigation of cell-free DNA for aneuploidy screening in embryos[J]. Fertil Steril, 2018, 110(3): 467-475. [18] Sharma H, Singh D, Mahant A, et al. Development of mitochondrial replacement therapy: a review[J]. Heliyon, 2020, 6(9): e04643. [19] Babayev E, Seli E. Oocyte mitochondrial function and reproduction[J]. Curr Opin Obstet Gynecol, 2015, 27(3): 175-181. [20] Zou W, Slone J, Cao Y, et al. Mitochondria and their role in human reproduction[J]. DNA Cell Biol, 2020, 39(8): 1370-1378. [21] Wolf DP, Mitalipov N, Mitalipov S. Mitochondrial replacement therapy in reproductive medicine[J]. Trends Mol Med, 2015, 21(2): 68-76. [22] Wu K, Chen T, Huang S, et al. Mitochondrial replacement by pre-pronuclear transfer in human embryos[J]. Cell Res, 2017, 27(6): 834-837. [23] Wu K, Zhong C, Chen T, et al. Polar bodies are efficient donors for reconstruction of human embryos for potential mitochondrial replacement therapy[J]. Cell Res, 2017, 27(8): 1069-1072. [24] 张迪, 刘欢. 线粒体置换技术的伦理学反思[J]. 中国医学伦理学, 2018, 31(7): 873-878. ZHANG Di, LIU Huan. Ethical reflection on the technique of mitochondria replacement[J]. Chinese Medical Ethics, 2018, 31(7): 873-878. [25] Sciorio R, Thong KJ, Pickering SJ. Single blastocyst transfer(SET)and pregnancy outcome of day 5 and day 6 human blastocysts vitrified using a closed device[J]. Cryobiology, 2018, 84: 40-45. doi:10.1016/j.cryobiol.2018.08.004. [26] Sciorio R, Thong KJ, Pickering SJ. Increased pregnancy outcome after day 5 versus day 6 transfers of human vitrified-warmed blastocysts[J]. Zygote, 2019, 27(5): 279-284. [27] Johnston J, Gusmano MK, Patrizio P. Preterm births, multiples, and fertility treatment: recommendations for changes to policy and clinical practices[J]. Fertil Steril, 2014, 102(1): 36-39. [28] Roque M, Haahr T, Geber S, et al. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes[J]. Hum Reprod Update, 2019, 25(1): 2-14. [29] Practice Committee of Society for Assisted Reproductive Technology, Practice Committee of American Society for Reproductive Medicine.Elective single-embryo transfer[J]. Fertil Steril, 2012, 97(4): 835-842. [30] Wei D, Liu JY, Sun Y, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial[J]. Lancet, 2019, 393(10178): 1310-1318. [31] Liu F, Jiang Q, Sun X, et al. Lipid metabolic disorders and ovarian hyperstimulation syndrome: a retrospective analysis[J]. Front Physiol, 2020, 11: 491892. doi:10.3389/fphys.2020.491892. [32] Maheshwari A, Pandey S, Amalraj Raja E, et al. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer?[J]. Hum Reprod Update, 2018, 24(1): 35-58. [33] Zhang B, Wei D, Legro RS, et al. Obstetric complications after frozen versus fresh embryo transfer in women with polycystic ovary syndrome: results from a randomized trial[J]. Fertil Steril, 2018, 109(2): 324-329. [34] Pan Y, Li B, Wang Z, et al. Hormone replacement versus natural cycle protocols of endometrial preparation for frozen embryo transfer[J]. Front Endocrinol, 2020, 11: 546532. doi:10.3389/fendo.2020.546532. [35] Lin J, Zhao JZ, Hao GM, et al. Maternal and neonatal complications after natural vs. hormone replacement therapy cycle regimen for frozen single blastocyst transfer[J]. Front Med, 2020, 7: 338. doi:10.3389/fmed.2020.00338. [36] Wang Z, Liu H, Song H, et al. Increased risk of pre-eclampsia after frozen-thawed embryo transfer in programming cycles[J]. Front Med(Lausanne), 2020, 7: 104. doi:10.3389/fmed.2020.00104. [37] Pourakbari R, Ahmadi H, Yousefi M, et al. Cell therapy in female infertility-related diseases: Emphasis on recurrent miscarriage and repeated implantation failure[J]. Life Sci, 2020, 258: 118181. doi:10.1016/j.lfs.2020.118181. [38] Yu N, Zhang B, Xu M, et al. Intrauterine administration of autologous peripheral blood mononuclear cells(PBMCs)activated by HCG improves the implantation and pregnancy rates in patients with repeated implantation failure: a prospective randomized study[J]. Am J Reprod Immunol, 2016, 76(3): 212-216. [39] Yoshioka S, Fujiwara H, Nakayama T, et al. Intrauterine administration of autologous peripheral blood mononuclear cells promotes implantation rates in patients with repeated failure of IVF-embryo transfer[J]. Hum Reprod, 2006, 21(12): 3290-3294. [40] Li S, Wang J, Cheng Y, et al. Intrauterine administration of hCG-activated autologous human peripheral blood mononuclear cells(PBMC)promotes live birth rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure[J]. J Reprod Immunol, 2017, 119: 15-22. doi:10.1016/j.jri.2016.11.006. [41] Chen J, Liu B, Zhang Y, et al. Effect of immunotherapy on patients with unexplained recurrent spontaneous abortion[J]. Ann Palliat Med, 2020, 9(5): 2545-2550. [42] Gharesi-Fard B, Zolghadri J, Kamali-Sarvestani E. Effect of leukocyte therapy on tumor necrosis factor-alpha and interferon-gamma production in patients with recurrent spontaneous abortion[J]. Am J Reprod Immunol, 2008, 59(3): 242-250. [43] Lee SK, Kim JY, Hur SE, et al. An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss[J]. Hum Reprod, 2011, 26(11): 2964-2971. [44] Raghupathy R, Makhseed M, Azizieh F, et al. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion[J]. Hum Reprod, 2000, 15(3): 713-718. [45] Fotouhi A, Maleki A, Dolati S, et al. Platelet rich plasma, stromal vascular fraction and autologous conditioned serum in treatment of knee osteoarthritis[J]. 2018, 104: 652-660. doi:10.1093/humrep/15.3.713. [46] Amable PR, Carias RB, Teixeira MV, et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors[J]. Stem Cell Res Ther, 2013, 4(3): 67. [47] Sato Y, Fujiwara H, Zeng BX, et al. Platelet-derived soluble factors induce human extravillous trophoblast migration and differentiation: platelets are a possible regulator of trophoblast infiltration into maternal spiral arteries[J]. Blood, 2005, 106(2): 428-435. [48] Fujiwara H. Immune cells contribute to systemic cross-talk between the embryo and mother during early pregnancy in cooperation with the endocrine system[J]. Reprod Med Biol, 2006, 5(1): 19-29. [49] Chang Y, Li J, Chen Y, et al. Autologous platelet-rich plasma promotes endometrial growth and improves pregnancy outcome during in vitro fertilization[J]. Int J Clin Exp Med, 2015, 8(1): 1286-1290. [50] Tandulwadkar SR, Naralkar MV, Surana AD, et al. Autologous intrauterine platelet-rich plasma instillation for suboptimal endometrium in frozen embryo transfer cycles: a pilot study[J]. J Hum Reprod Sci, 2017, 10(3): 208-212. [51] Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells-current trends and future prospective[J]. Biosci Rep, 2015, 35(2): e00191. [52] Spitzhorn LS, Megges M, Wruck W, et al. Human iPSC-derived MSCs(iMSCs)from aged individuals acquire a rejuvenation signature[J]. Stem Cell Res Ther, 2019, 10(1): 100. [53] Rungsiwiwut R, Virutamasen P, Pruksananonda K. Mesenchymal stem cells for restoring endometrial function: an infertility perspective[J]. Reprod Med Biol, 2021, 20(1): 13-19. [54] Ling L, Feng X, Wei T, et al. Human amnion-derived mesenchymal stem cell(hAD-MSC)transplantation improves ovarian function in rats with premature ovarian insufficiency(POI)at least partly through a paracrine mechanism[J]. Stem Cell Res Ther, 2019, 10(1): 46. [55] Yoon SY. Mesenchymal stem cells for restoration of ovarian function[J]. Clin Exp Reprod Med, 2019, 46(1): 1-7. [56] Zhao YX, Chen SR, Su PP, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases[J]. Stem Cells Int, 2019, 2019: 9071720. doi:10.1155/2019/9071720. |
[1] | 郝桂敏,罗卓野,王奕卓. 生育力保存的伦理问题及思考[J]. 山东大学学报 (医学版), 2022, 60(9): 47-52. |
[2] | 石玉华,潘烨,谢燕秋. 胚胎冷冻保存技术及进展[J]. 山东大学学报 (医学版), 2022, 60(9): 12-18. |
[3] | 颜磊,岳彩欣,刘懿淳. 子宫内膜异位症的生育力保护[J]. 山东大学学报 (医学版), 2022, 60(9): 31-34. |
[4] | 赵冰清,高选,李江夏. 基于辅助生殖人群的复发性流产夫妇染色体核型回顾性分析[J]. 山东大学学报 (医学版), 2021, 59(7): 26-31. |
[5] | 朱序理,周亮,王跃,孙庆云,曹明雅,杜元杰,曹金凤,赵志明,郝桂敏. 不同精子来源质量冷冻方式与妊娠结局的关联性分析[J]. 山东大学学报 (医学版), 2021, 59(6): 86-93. |
[6] | 宫小舒,吴日超,李秀芳,潘烨,王泽,石玉华. 603例多囊卵巢综合征患者不同促排卵内膜准备方案对冻胚移植结局的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 48-54. |
[7] | 张秀清,张敬,蒋琪,李晨,刘畅,李瑞静,冯惠娟,耿玲. 腔内理疗对89例薄型子宫内膜冻融胚胎移植患者妊娠结局的影响[J]. 山东大学学报 (医学版), 2020, 58(5): 62-68. |
[8] | 曹明雅,赵晗洁,冯腾飞,贾蕊,赵志明,郝桂敏. 孕早期行减胎术对胚胎移植助孕患者围产期母婴的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 65-70. |
[9] | 黄薇,刘冬. 子宫内膜异位症相关不孕的助孕策略[J]. 山东大学学报 (医学版), 2019, 57(6): 23-26. |
[10] | 韩婷,陈红蕾. 辅助生殖治疗中腹腔镜手术应用及注意问题[J]. 山东大学学报 (医学版), 2019, 57(10): 45-51. |
[11] | 张迎春. 人类辅助生殖技术子代安全性问题[J]. 山东大学学报 (医学版), 2019, 57(10): 52-59. |
[12] | 伍琼芳. 辅助生殖治疗中取卵后出血的可能原因及处理[J]. 山东大学学报 (医学版), 2019, 57(10): 33-37. |
[13] | 赵君利, 袁莹莹. 辅助生殖治疗中多胎妊娠的防治[J]. 山东大学学报 (医学版), 2019, 57(10): 20-26. |
[14] | 石玉华,蒋琪. 辅助生殖治疗中卵巢过度刺激综合征的防治[J]. 山东大学学报 (医学版), 2019, 57(10): 13-19. |
[15] | 郝桂敏,罗卓野,崔娜. 辅助生殖技术治疗中常见并发症的危害[J]. 山东大学学报 (医学版), 2019, 57(10): 7-12. |
|