山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 89-96.doi: 10.6040/j.issn.1671-7554.0.2021.1017
王琳琳1,孙玉萍2
WANG Linlin1, SUN Yuping2
摘要: 在癌症的精准诊疗中,以深度学习为代表的人工智能技术日益展现出巨大的潜力。在医学影像、病理学等领域,人工智能技术的出现不仅有望大大降低相关科室人员的工作量,通过对影像、病理学图片进行定量描述,人工智能技术也可进一步挖掘出医学数据中潜在的复杂模式。综述首先对目前流行的人工智能技术进行简单的介绍。其次,重点探讨了深度学习技术如何最先影响到癌症影像诊断学的。随后,介绍了人工智能技术在癌症病理学、基因组学、免疫治疗等领域的最新进展。最后,进一步探讨了癌症领域人工智能临床落地过程中存在的困难,并提出一些可能的解决思路,以期为未来的研究提供参考。
中图分类号:
[1] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518(7540): 529-533. [2] Moravcík M, Schmid M, Burch N, et al. DeepStack: expert-level artificial intelligence in heads-up no-limit poker [J]. Science, 2017, 356(6337): 508-513. [3] Xiong W, Droppo J, Huang X, et al. Achieving human parity in conversational speech recognition [EB/OL].(2017-02-17)[2021-05-10]. https://arxiv.org/abs/1610.05256. [4] Pendleton SD, Andersen H, Du X, et al. Perception, planning, control, and coordination for autonomous vehicles [J]. Machines, 2017, 5(1): 6. [5] Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search [J]. Nature, 2016, 529(7587): 484-489. [6] Grace K, Salvatier J, Dafoe A, et al. When will AI exceed human performance? evidence from AI experts [EB/OL].(2018-07-31)[2021-05-10]. https://arxiv.org/abs/1705.08807. [7] Rusk N. Deep learning [J]. Nature Methods, 2016, 13(1): 35-35. [8] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115-118. [9] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs [J]. JAMA, 2016, 316(22): 2402-2410. [10] Castellino RA. Computer aided detection(CAD): an overview [J]. Cancer Imaging, 2005, 5: 17-19. doi:10.1102/1470-7330.2005.0018. [11] Cole EB, Zhang Z, Marques HS, et al. Impact of computer-aided detection systems on radiologist accuracy with digital mammography [J]. AJR Am J Roentgenol, 2014, 203(4): 909-916. [12] Lehman CD, Wellman RD, Buist DS, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection [J]. JAMA Intern Med, 2015, 175(11): 1828-1837. [13] Huang X, Shan J, Vaidya V. Lung nodule detection in CT using 3D convolutional neural networks[C] //2017 IEEE 14th International Symposium on Biomedical Imaging(ISBI 2017). Piscataway, NJ: IEEE, 2017: 379-383. [14] Armato SG, Petrick NA, Tsehay YK, et al. SPIE Proceedings [SPIE SPIE Medical Imaging - Orlando, Florida, United States(Saturday 11 February 2017)] Medical Imaging 2017: Computer-Aided Diagnosis - Convolutional neural network based deep-learning architecture for prostate cancer detection on multi [J]. onAcademic, 2017, 10134: 1013405. doi: 10.1117/12.2254423. [15] Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions [J]. Med Image Anal, 2017, 35: 303-312. doi:10.1016/j.media.2016.07.007. [16] Champaign JL, Cederbom GJ. Advances in breast cancer detection with screening mammography [J]. Ochsner J, 2000, 2(1): 33-35. [17] Shiraishi J, Li Q, Appelbaum D, et al. Computer-aided diagnosis and artificial intelligence in clinical imaging [J]. Semin Nucl Med, 2011, 41(6): 449-462. [18] Cheng JZ, Ni D, Chou YH, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans [J]. Sci Rep, 2016, 6: 24454. doi:10.1038/srep24454. [19] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651. doi:10.1109/TPAMI.2016.2572683. [20] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Switzerland: Springer International Publishing, 2015. [21] Moeskops P, Wolterink JM, van der Velden BHM, et al. Deep learning for multi-task medical image segmentation in multiple modalities [C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2016: 478-486. [22] Jaffe CC. Measures of response: RECIST, WHO, and new alternatives [J]. J Clin Oncol, 2006, 24(20): 3245-3251. [23] Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer [J]. JAMA, 2017, 318(22): 2199-2210. [24] Mobadersany P, Yousefi S, Amgad M, et al. Content summaries of selected best papers for the 2019 IMIA yearbook, section bioinformatics and translational informatics [J]. Proc Natl Acad Sci USA, 2018, 115(13): E2970-E2979. [25] Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer [J]. JAMA, 2017, 318(22): 2199-2210. [26] Zou J, Huss M, Abid A, et al. A primer on deep learning in genomics [J]. Nat Genet, 2019, 51(1): 12-18. [27] F Stephen Hodi, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma [J]. N Engl J Med, 2010, 363(8): 711-723. [28] Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer [J]. N Engl J Med, 2015, 372(21): 2018-2028. [29] Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer [J]. N Engl J Med, 2015, 373(17): 1627-1639. [30] Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck [J]. N Engl J Med, 2016, 375(19): 1856-1867. [31] Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade [J]. Science, 2017, 357(6349): 409-413. [32] Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma [J]. N Engl J Med, 2015, 373(19): 1803-1813. [33] Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer [J]. N Engl J Med, 2015, 373(2): 123-135. [34] Mehra R, Seiwert TY, Gupta S, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012 [J]. Br J Cancer, 2018, 119(2): 153-159. [35] Hamanishi J, Mandai M, Ikeda T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer [J]. J Clin Oncol, 2015, 33(34): 4015-4022. [36] Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma [J]. N Engl J Med, 2015, 373(1): 23-34. [37] Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study [J]. Lancet Oncol, 2016, 17(11): 1497-1508. [38] Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy [J]. Nat Rev Cancer, 2016, 16(5): 275-287. [39] Sunshine J, Taube JM. PD-1/PD-L1 inhibitors[J]. Curr Opin Pharmacol, 2015, 23: 32-38. doi:10.1016/j.coph.2015.05.011. [40] Xie F, Zhang J, Wang J, et al. Multifactorial deep learning reveals Pan-cancer genomic tumor clusters with distinct immunogenomic landscape and response to immunotherapy [J]. Clin Cancer Res, 2020, 26(12): 2908-2920. [41] Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510. [42] Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development [J]. Nat Rev Drug Discov, 2019, 18(6): 463-477. [43] Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology [J]. Nat Rev Clin Oncol, 2019, 16(11): 703-715. [44] Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies [J]. BMJ, 2020, 368: m689. doi:10.1136/bmj.m689. [45] Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis [J]. Lancet Digital Health, 2019, 1(6): e271-e297. [46] Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information [J]. Ann Intern Med, 1999, 130(6): 515-524. [47] Subbaswamy A, Saria S. From development to deployment: dataset shift, causality, and shift-stable models in health AI [J]. Biostatistics, 2020, 21(2): 345-352. [48] Zech JR, Badgeley MA, Liu M. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study [J]. PLoS Met, 2018, 15(11): e1002683. [49] Winkler JK, Fink C, Toberer F, et al. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition [J]. JAMA dermatology, 2019, 155(10): 1135-1141. [50] Narla A, Kuprel B, Sarin K, et al. Automated classification of skin lesions: from pixels to practice [J]. J Invest Dermatol, 2018, 138(10): 2108-2110. [51] Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis(TRIPOD): explanation and elaboration [J]. Ann Intern Med, 2015, 162(1): W1-73. [52] Ioannidis JPA, Khoury MJ. Improving validation practices in “omics” research [J]. Science, 2011, 334(6060): 1230-1232. [53] Obermeyer Z, Emanuel EJ. Predicting the future- big data, machine learning, and clinical medicine [J]. N Engl J Med, 2016, 375(13): 1216-1219. [54] Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis [J]. NPJ Digit Med, 2018, 1: 40. doi:10.1038/s41746-018-0048-y. [55] Kawaguchi K, Kaelbling LP, Bengio Y. Generalization in deep learning[EB/OL].(2020-07-27)[2021-05-12]. https://arxiv.org/abs/1710.05468. [56] LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [57] Pfeifer R, Schreter Z, Fogelman-Soulié F,et al. Connectionism in perspective [M]. Amsterdam: Elsevier, 1989. [58] Pan SJ, Yang Q. A survey on transfer learning[J]. Ieee T Knowl Data En, 2009, 22(10): 1345-1359. [59] Weiss K, Khoshgoftaar TM, Wang DD. A survey of transfer learning [J]. J Big Data, 2016, 3(1):1-40. [60] Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database [C]. IEEE Conf Comput Vis Pattern Recog Piscataway, NJ: Ieee, 2009: 248-255. [61] Shankar S, Halpern Y, Breck E, et al. No classification without representation: assessing geodiversity issues in open data sets for the developing world [EB/OL].(2017-11-22)[2021-05-13]. https://arxiv.org/abs/1711.08536. [62] Geirhos R, Rubisch P, Michaelis C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness [EB/OL].(2019-01-14)[2021-05-13]. https://arxiv.org/abs/1811.12231. [63] Sun C, Shrivastava A, Singh S, et al. Revisiting unreasonable effectiveness of data in deep learning era [EB/OL].(2017-08-04)[2021-05-13]. https://arxiv.org/abs/1707.02968. [64] Simard P, Victorri B, LeCun Y, et al. Tangent prop-a formalism for specifying selected invariances in an adaptive network [C]. NIPS, 1991, 91: 895-903. [65] de Andrade A. Best practices for convolutional neural networks applied to object recognition in images [EB/OL].(2019-10-29)[2021-05-13]. https://arxiv.org/abs/1910.13029. [66] Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning [J]. J Big Data, 2019, 6(1): 1-48. [67] Roth HR, Lu L, Liu J, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation [J]. IEEE Trans Med Imaging, 2016, 35(5): 1170-1181. [68] Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks [J]. Radiology, 2017, 284(2): 574-582. [69] Zeshan, Hussain, Francisco, et al. Differential data augmentation techniques for medical imaging classification tasks [J]. Amia Annu Symp Proc, 2018, 2017: 979. [70] Sajjad M, Khan S, Muhammad K, et al. Multi-grade brain tumor classification using deep CNN with extensive data augmentation [J]. J Comput Sci, 2019, 30: 174-182. doi:10.1016/j.jocs.2018.12.003. [71] Stacke K, Eilertsen G, Unger J, et al. Measuring domain shift for deep learning in histopathology [J]. IEEE J Biomed Health, 2020, 25(2): 325-336. [72] ellez D, Litjens G, Bándi P, et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology [J]. Med Image Anal, 2019, 58: 101544. doi:10.1016/j.media.2019.101544. [73] van den Hout WB. The area under an ROC curve with limited information [J]. Med Decis Making, 2003, 23(2): 160-166. [74] Fawcett T. An introduction to ROC analysis[J]. Pattern recognition letters, 2006, 27(8): 861-874. [75] Harrell FE, Califf RM, Pryor DB, et al. Evaluating the yield of medical tests [J]. Jama, 1982, 247(18): 2543-2546. [76] Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models [J]. Global Ecol Biogeogr, 2008, 17(2): 145-151. [77] Ioannidis JPA. What have we(not)learnt from millions of scientific papers with P values? [J]. Am Stat, 2019, 73(Suppl1): 20-25. [78] Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy [J]. Lancet, 2005, 365(9458): 488-492. [79] Miller, R.G. Simultaneous statistical inference [M]. 2nd edition. Cham: Springer, 1981. [80] Hochberg Y, Tamhane AC. Multiple comparison procedures [M]. New Jersey: John Wiley & Sons, Inc, 1987. |
[1] | 王伟 王沂峰 张岭梅 林琼燕 黄菊. 人卵巢癌OVCAR3细胞系中侧群细胞的分离及其成瘤性、侵袭性的实验研究[J]. 山东大学学报(医学版), 2209, 47(6): 8-11. |
[2] | 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61. |
[3] | 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-. |
[4] | 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-. |
[5] | 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19. |
[6] | 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112. |
[7] | 孙文雄,吴日超,郑贤静,李丽, 张友忠. 宫颈血管周上皮样细胞肿瘤1例[J]. 山东大学学报 (医学版), 2022, 60(9): 125-128. |
[8] | 吴瑞芳,李长忠. 女性生育力保护的现状与进展[J]. 山东大学学报 (医学版), 2022, 60(9): 1-7. |
[9] | 张艺馨,赵玉立,封丽. 超声特征及术前CA-125联合对51例卵巢交界性及Ⅰ期恶性肿瘤的鉴别诊断[J]. 山东大学学报 (医学版), 2022, 60(7): 104-109. |
[10] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
[11] | 宋钰峰,宁豪,姚志刚,吴海虎,刘非凡,吕家驹. 肾上腺海绵状血管瘤临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(2): 37-42. |
[12] | 程传龙,杨淑霞,佘凯丽,房启迪,韩闯,刘盈,崔峰,李秀君. 淄博市2018年恶性肿瘤的流行特征及影响因素[J]. 山东大学学报 (医学版), 2022, 60(2): 102-108. |
[13] | 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120. |
[14] | 许英杰,吕洪涛,荣风年. 妊娠期外阴血管肌纤维母细胞瘤1例[J]. 山东大学学报 (医学版), 2022, 60(11): 130-132. |
[15] | 毕文浩,俞能旺,蒋立城. 肾脏原发性尤文肉瘤1例[J]. 山东大学学报 (医学版), 2022, 60(10): 117-119. |
|