您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (3): 48-53.doi: 10.6040/j.issn.1671-7554.0.2017.164

• • 上一篇    

丙戊酸钠增强二甲双胍对前列腺癌PC-3细胞的抗肿瘤作用

毛少为,卢国良,李亮,夏庆华   

  1. 山东大学附属省立医院泌尿微创中心, 山东 济南 250014
  • 收稿日期:2017-02-23 发布日期:2022-09-27
  • 通讯作者: 夏庆华. E-mail:xqhgege@hotmail.com
  • 基金资助:
    国家自然科学基金(81672553)

Valproic acid augments the anti-tumor potential of metformin in PC-3 cells

MAO Shaowei, LU Guoliang, LI Liang, XIA Qinghua   

  1. Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250014, Shandong, China
  • Received:2017-02-23 Published:2022-09-27

摘要: 目的 探讨去乙酰化酶抑制剂丙戊酸钠(VPA)与二甲双胍(MET)在前列腺癌PC-3细胞中的抗肿瘤作用。 方法 分别处理前列腺癌PC-3细胞,分为对照组、VPA组、MET组、VPA+MET组。随后采用CCK-8法检测肿瘤细胞的活性变化,Transwell技术检测肿瘤的侵袭转移能力,Western blotting检测pAkt、pSmad3、aH3、aH4等蛋白的水平变化。 结果 VPA组与MET组均可抑制肿瘤细胞的侵袭转移能力与肿瘤细胞活性,而VPA+MET组对肿瘤细胞侵袭转移能力和肿瘤细胞活性的抑制较VPA组与MET组更加显著。相比较对照组和MET组,VPA+MET组中pAkt、pmTOR和pSmad3蛋白水平明显降低,伴随aH3、aH4乙酰化水平明显升高(P<0.05)。 结论 VPA与MET两种药物联合应用较单一用药具有更显著的优势。这种优势可能是通过调节转化生长因子-β(TGF-β)与雷帕霉素靶蛋白(mTOR)两条通路活性及上调组蛋白aH3、aH4而实现。

关键词: 前列腺肿瘤, 丙戊酸钠, 二甲双胍, 转化生长因子-β, 雷帕霉素靶蛋白

Abstract: Objective To explore the anti-tumor effect of valproic acid(VPA)and metformin on human prostate cancer cells. Methods PC-3 cells were treated with VPA and metformin andmetformin+VPA, and were devided into control group, VPA group, Met group and VPA+MET group. The cell viability and invasion properties were detectedwith CCK-8 and Transwell assay, respectively. Related proteins including pAkt, pSmad3, aH3 and aH4 were detected with Western blotting. Results Both VPA and metformin could inhibit tumor cell migration and viability. Metformin+VPA had much stronger anticancer effect than metformin and VPA alone. Compared with control group and MET group, the VPA+MET group showed induced levels of Akt, pmTOR and pSmad3, but elevated levels of aH3 and aH4. Conclusion The metformin+VPA combination has advantage over metformin mono-treatment in vitro. The regulation of transforming growth factor-β(TGF-β)and mammalian target of rapamycin(mTOR)pathways and the responsiveness of aH3 and aH4 might be involved in this process.

Key words: Prostate cancer, Valproicacid, Metformin, Transforming growth factor-β, Mammalian target of rapamycin

中图分类号: 

  • R737.25
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1): 9-29.
[3] Van De Voorde L, Janssen L, Larue R, et al. Can metformin improve ‘the tomorrow’ of patients treated for oesophageal cancer?[J]. Eur J Surg Oncol, 2015, 41(10): 1333-1339.
[4] Raval AD, Thakker D, Vyas A, et al. Impact of metformin on clinical outcomes among men with prostate cancer: a systematic review and meta-analysis[J]. Prostate Cancer Prostatic Dis, 2015,18(2):110-121.
[5] Incárová L, Zdráhal Z, Fajkus J. New perspectives of valproicacid in clinical practice[J]. Expert Opin Investig Drugs, 2013, 22(12): 1535-1547.
[6] Juengel E, Makarevic J, Tsaur I, et al. Resistance after chronic application of the HDAC- inhibitor Valproic acid is associated with elevated Akt activation in renal cell carcinoma in vivo[J]. PLoS One, 2013, 8(1): e53100.
[7] Hager M, Haufe H, Lusuardi L, et al. PTEN, pAKT, and pmTOR expression and subcellular distribution in primary renal cell carcinomas and their metastases[J]. Cancer Invest, 2011, 29(7): 427-438.
[8] Xie W, Aisner S, Baredes S, et al. Alterations of smadexpression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma[J]. Head Neck, 2013, 35(1): 76-85.
[9] Shlomai G, Neel B, Leroith D, et al. Type 2 Diabetes mellitus and cancer: the role of pharmacotherapy[J]. J Clin Oncol, 2016, 34(35): 4261-4269.
[10] 冯瑾, 陈光侠, 费素娟.二甲双胍抗肿瘤机制的研究进展[J].实用药物与临床, 2016, 19(10): 1310-1315. FENG Jin, CHEN Guangxia, FEI Sujuan. Research progress in anti-tumor effect of metformin[J]. Pratical and Clinical Drugs, 2016, 19(10): 1310-1315.
[11] 王涛,王峰,何炜,等.二甲双胍对人食管癌KYSE450细胞系增殖和凋亡的影响[J].郑州大学学报(医学版), 2015, 50(3): 305-309. WANG Tao, WANG Feng, HE Wei, et al. Effects of metformin on proliferation and apoptosis of human esophageal cancer cells KYSE450[J]. Journal of Zhengzhou University(Medical Sciences), 2015, 50(3): 305-309.
[12] 张涛, 石琦, 金迅波.二甲双胍增强膀胱癌5637细胞对TRAIL的敏感性及其机制研究[J/CD].泌尿外科杂志,2014(1): 21-25. ZHANG Tao, SHI Qi, JIN Xunbo. Metformin sensitizes bladder cancer cells 5637 to TRAIL-induced apoptosis[J]. Journal of Urology for Clinician(Electronic Version), 2014(1): 21-25.
[13] Kato H, Sekine Y, Furuya Y, et al. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor[J]. Biochem Biophys Res Commun, 2015, 461(1): 115-121.
[14] Chen X, Li C, He T, et al. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression[J]. Cancer Biol Ther, 2016, 17(5): 507-514.
[15] Chen L, Ahmad N, Liu X. Combining p53 stabilizers with metformin induces synergistic apoptosis through regulation of energy metabolism in castration-resistant prostate cancer[J]. Cell Cycle, 2016, 15(6): 840-849.
[16] Wu GF, Zhang XL, Luo ZG, et al. Metformin therapy and prostate cancer risk: a meta-analysis of observational studies[J]. Int J Clin Exp Med, 2015, 8(8): 13089-13098.
[17] Wedel S, Hudak L, Seibel JM, et al. Inhibitory effects of the HDAC inhibitor valproic acid on prostate cancer growth are enhanced by simultaneous application of the mTOR inhibitor RAD001[J]. Life Sci, 2011, 88(9-10): 418-424.
[18] Tatebe H, Shimizu M, Shirakami Y, et al. Acyclic retinoid synergises with valproic acid to inhibit growth in human hepatocellular carcinoma cells[J]. Cancer Lett, 2009, 285(2): 210-217.
[19] Lan X, Lu G, Yuan C, et al. Valproic acid(VPA)inhibits the epithelial-mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4[J]. J Cancer Res Clin Oncol, 2016, 142(1): 177-185.
[20] Avery LB, Bumpus NN. Valproic acid is a novel activator of AMP-activated protein kinase and decreases liver mass, hepatic fat accumulation, and serum glucose in obese mice[J]. Mol Pharmacol, 2013, 85(1): 1-10.
[21] Juengel E, Dauselt A, Makarevic J, et al. Acetylation of histone H3 prevents resistance development caused by chronic mTOR inhibition in renal cell carcinoma cells[J]. Cancer Lett, 2012, 324(1): 83-90.
[22] Liu JL, Mao Z, Gallick GE, et al. AMPK/TSC2/mTOR-signaling intermediates are not necessary for LKB1-mediated nuclear retention of PTEN tumor suppressor[J]. Neuro Oncol, 2011, 13(2): 184-194.
[1] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[2] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[3] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
[4] 何鹏娟,颜磊,范明君,刘祥斌,赵兴波. 辛伐他汀对TGF-β诱导的卵巢癌上皮间质转化的影响[J]. 山东大学学报 (医学版), 2018, 56(5): 46-51.
[5] 杨飞龙,周尊林,任巨超,闫磊,刘海南, 张温花,俞能旺,李大伟,徐忠华. 肝癌衍生生长因子对前列腺癌细胞增殖的影响及其机制[J]. 山东大学学报 (医学版), 2018, 56(1): 62-69.
[6] 董伟,邢乃栋,吕家驹,刘帅,孙亮,曹庆伟,董宇昊,刘钊,丁森泰. 靶向抑制有丝分裂驱动蛋白治疗多西紫杉醇耐药前列腺癌的体外疗效[J]. 山东大学学报(医学版), 2017, 55(9): 23-30.
[7] 李雪,李栋,时庆,周盼盼,鞠秀丽. Helios在儿童急性淋巴细胞性白血病调节性T细胞中的表达及功能[J]. 山东大学学报(医学版), 2017, 55(4): 76-81.
[8] 夏传友,李路超,李孝峰,颜克强, 张念昭,范医东,刘承. 组蛋白甲基化酶SMYD3在前列腺癌组织的表达及对mTOR通路的影响[J]. 山东大学学报(医学版), 2016, 54(5): 12-16.
[9] 席福立,张梅. MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控[J]. 山东大学学报(医学版), 2016, 54(2): 6-10.
[10] 张雪群,高卫,潘盼,高骏逸. PI3K/AKT及其相关因子在结肠癌中的表达[J]. 山东大学学报(医学版), 2016, 54(1): 52-57.
[11] 韩博, 戚美, 谭薇薇, 杨木易. 去势抵抗性前列腺癌的发生发展机制及药物治疗新进展[J]. 山东大学学报(医学版), 2015, 53(9): 1-7.
[12] 程翔宇, 邢锐, 邢召全, 郭兆新, 郭晓宇, 苏静, 孟力维, 刘照旭. 氯化两面针碱对前列腺癌细胞PC-3增殖与凋亡的影响[J]. 山东大学学报(医学版), 2015, 53(9): 13-18.
[13] 张伟, 周勇, 牛俊婕, 徐英, 侯华英, 姜玉华. 抗癫痫药丙戊酸钠对大鼠正常脑组织的放射保护作用[J]. 山东大学学报(医学版), 2015, 53(10): 11-15.
[14] 李学玲, 董西林, 岳英. 二甲双胍抑制裸鼠肺腺癌移植瘤生长的实验研究[J]. 山东大学学报(医学版), 2014, 52(S1): 1-2.
[15] 黄艳, 旷昕, 熊花, 刘鑫, 罗晓青, 刘斌. 柴朴汤调控VEGF、TGF-β1的表达对哮喘大鼠气道重塑的影响[J]. 山东大学学报(医学版), 2014, 52(S1): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!