您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (8): 76-87.doi: 10.6040/j.issn.1671-7554.0.2017.1275

• • 上一篇    

气温对2007~2013年济南市人群慢性非传染性疾病死亡的归因风险研究

李京1,2,王创新3,胥欣4,杨军5,王春平1,2,薛付忠6,刘起勇7,8   

  1. 1.潍坊医学院公共卫生与管理学院环境卫生教研室, 山东 潍坊 261053;2.“健康山东”重大社会风险预测与治理协同创新中心, 山东 潍坊 261053;3.济南市历城区疾病预防控制中心, 山东 济南 250100;4.潍坊医学院附属医院口腔科, 山东 潍坊 261000;5.暨南大学环境与气候研究院, 广东 广州 510632;6.山东大学公共卫生学院生物统计学系, 山东 济南 250012;7.山东大学气候变化与健康研究中心, 山东 济南 250012;8.中国疾病预防控制中心传染病预防控制所, 北京 102206
  • 发布日期:2022-09-27
  • 通讯作者: 薛付忠. E-mail:xuefzh@sdu.edu.cn;刘起勇. E-mail:liuqiyong@icdc.cn
  • 基金资助:
    国家重点研发计划(2016YFC1200800);国家自然科学基金(81703280);山东省医药卫生科技发展计划(2017WS703);山东省医药卫生科技发展计划(2016WS0664);潍坊市科技发展计划(2016YX065);潍坊医学院教育教学改革与研究重点项目(2016Z0102);山东省保健科技协会资助项目(20170022)

Impacts of ambient temperature on chronic non-communicable disease mortality in Jinan City, China during 2007-2013: an attributable risk study

LI Jing1,2, WANG Chuangxin3, XU Xin4, YANG Jun5, WANG Chunping1,2, XUE Fuzhong6, LIU Qiyong7,8   

  1. 1. Division of Environmental Health, School of Public Health and Management, Weifang Medical University, Weifang 261053, Shandong, China;
    2. “Health Shandong” Major Social Risk Prediction and Governance Collaborative Innovation Center, Weifang 261053, Shandong, China;
    3. Licheng District Center for Disease Control and Prevention, Jinan 250100, Shandong, China;
    4. Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong, China;
    5. Jinan University Institute for Environmental and Climate Research, Guangzhou 510632, Guangdong, China;
    6. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    7. Shandong University Climate Change and Health Center, Jinan 250012, Shandong, China;
    8. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China)〓山〓东〓大〓学〓学〓报〓(医〓学〓版)56卷8期〓-李京, 等.气温对2007~2013年济南市人群慢性非传染性疾病死亡的归因风险研究〓\=-〓〓
  • Published:2022-09-27

摘要: 目的 采用归因风险评估分析气温与健康结局之间的关系,补充公共卫生学方面的证据。 方法 收集济南市2007~2013年逐日气温与非意外死亡、心血管疾病死亡和呼吸系统疾病死亡的逐日死亡数据,采用分布滞后非线性模型的归因风险评估方法,分析气温暴露造成人群死亡的归因风险,并进一步探索气温对敏感人群的风险。 结果 济南市日均气温与非意外死亡/心血管疾病死亡/呼吸系统疾病死亡的累积暴露-反应关系曲线近似呈U型;由气温导致的归因风险比例分别为13.2%(95%CI: 9.6~16.8)/17.0%(95%CI: 12.6~20.8)/27.8%(95%CI: -2.5~50.5)。低温对女性、老年人和教育水平较低者影响较大。 结论 高温或低温均可增加人群不同疾病死亡风险,但是低温效应的归因比例高于高温的作用。

关键词: 非意外死亡, 心血管疾病, 呼吸系统疾病, 气温, 归因风险, 死亡

Abstract: Objective To supplement the public health evidence by assessing the relationship between temperature and health adopting attributable risk assessment. Methods Daily data on temperature and non-accidental/cardiovascular/respiratory mortality outcomes were obtained from 2007 to 2013. Attributable risk assessment by distributed lag non-linear model was used to estimate the relationship of different disease mortality with temperature, and further to explore the risks of temperature on susceptible population. Results The overall cumulative exposure-response curve of temperature-mortality relationship was U-shaped. In total, ambient temperature was attributable 13.2%(95%CI: 9.6-16.8)/17.0%(95%CI: 12.6-20.8)/27.8%(95%CI: -2.5-50.5)to death risks for non-accidental/cardiovascular/respiratory disease, respectively. Females, people ≥65 years and people with low educated level were more vulnerable. Conclusion Both heat and cold are associated with an increased risk of daily mortality, but most mortality burdens are caused by cold.

Key words: Non-accidental death, Cardiovascular disease, Respiratory disease, Temperature, Attributable risk, Mortality

中图分类号: 

  • R181.3+4
[1] Christopher BF. Managing the risks of extreme events and disasters to advance climate change adaptation[M]. Cambridge: Cambridge University Press, 2012.
[2] Costello A, Abbas M, Allen A, et al. Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission[J]. Lancet, 2009, 373(9676): 1693-733.
[3] Ezzati M, Jamison DT, Lopez AD, et al. Global burden of disease and risk factors[J]. Washington D, 2010, 22(3): 277-283.
[4] Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States[J]. Epidemiology, 2009, 20(2): 205-213.
[5] Zanobetti A, ONeill MS, Gronlund CJ, et al. Susceptibility to mortality in weather extremes: effect modification by personal and small-area characteristics[J]. Epidemiology, 2013, 24(6): 809-819.
[6] Li J, Xu X, Yang J, et al. Ambient high temperature and mortality in Jinan, China: a study of heat thresholds and vulnerable populations[J]. Environ Res, 2017, 156: 657-664. doi: 10.1016/j.envres.2017.04.020.
[7] Ma W, Wang L, Lin H, et al. The temperature-mortality relationship in China: an analysis from 66 Chinese communities[J]. Environ Res, 2015, 137: 72-77. doi: 10.1016/j.envres.2014.11.016.
[8] Huang Z, Lin H, Liu Y, et al. Individual-level and community-level effect modifiers of the temperature-mortality relationship in 66 Chinese communities[J]. BMJ Open, 2015, 5(9): e009172. doi: 10.1136/bmjopen-2015-009172.
[9] Zhang H, Wang Q, Zhang Y, et al. Modeling the impacts of ambient temperatures on cardiovascular mortality in Yinchuan: evidence from a northwestern city of China[J]. Environ Sci Pollut Res Int, 2017, 25(6): 6036-6043.
[10] Braga AL, Zanobetti A, Schwartz J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities[J]. Environ Health Perspect, 2002, 110(9): 859-863.
[11] Ma W, Chen R, Kan H. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China[J]. Environ Res, 2014, 134: 127-133. doi: 10.1016/j.envres.2014.07.007.
[12] Yu W, Hu W, Mengersen K, et al. Time course of temperature effects on cardiovascular mortality in Brisbane, Australia[J]. Heart, 2011, 97(13): 1089-1093.
[13] Steenland K, Armstrong B. An overview of methods for calculating the burden of disease due to specific risk factors[J]. Epidemiology, 2006, 17(5):512-519.
[14] Baccini M, Kosatsky T, Analitis A, et al. Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios[J]. J Epidemiol Community Health, 2011, 65(1): 64-70.
[15] Carson C, Hajat S, Armstrong B, et al. Declining vulnerability to temperature-related mortality in London over the 20th century[J]. Am J Epidemiology, 2006, 164(1): 77-84.
[16] Gasparrini A, Leone M. Attributable risk from distributed lag models[J]. BMC Med Res Methodol, 2014, 14: 55. doi: 10.1186/1471-2288-14-55.
[17] Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models[J]. Stat Med, 2017, 29(21): 2224-2234.
[18] Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study[J]. Lancet, 2015, 386(9991): 369-375.
[19] Yang J, Yin P, Zhou M, et al. The burden of stroke mortality attributable to cold and hot ambient temperatures: epidemiological evidence from China[J]. Environ Int, 2016, 92-93: 232-238. doi: 10.1016/j.envint.2016.04.001.
[20] Analitis A, Katsouyanni K, Biggeri A, et al. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project[J]. Am J Epidemiol, 2008, 168(12): 1397-1408.
[21] Zhang Y, Li S, Pan X, et al. The effects of ambient temperature on cerebrovascular mortality: an epidemiologic study in four climatic zones in China[J]. Environ Health, 2014, 13(1): 24. doi: 10.1186/1476-069X-13-24.
[22] 陈美池,牛静萍,阮烨,等.兰州市日均气温与心血管疾病日入院人次的时间序列研究[J]. 环境与健康杂志, 2014, 31(5): 391-394. CHEN Meichi, NIU Jingping, RUAN Ye, et al. Relationship between daily mean temperature and number of daily hospitalization of cardiovascular diseases in Lanzhou: a time-series study[J]. J Environ Health, 2014, 31(5): 391-394.
[23] Hajat S, Armstrong B, Baccini M, et al. Impact of high temperatures on mortality: is there an added heat wave effect?[J] Epidemiology, 2006, 17(6): 632-638.
[24] Bustinza R, Lebel G, Gosselin P, et al. Health impacts of the July 2010 heat wave in Québec, Canada[J]. BMC Public Health, 2013, 13: 56. doi: 10.1186/1471-2458-13-56.
[25] Miron IJ, Montero JC, Criado-Alvarez JJ, et al. Intense cold and mortality in Castile-La Mancha(Spain): study of mortality trigger thresholds from 1975 to 2003[J]. Int J Biometeorol, 2012, 56(1): 145-152.
[26] Guo Y, Gasparrini A, Armstrong B, et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation[J]. Epidemiology, 2014, 25(6): 781-789.
[27] Carson C, Hajat S, Armstrong B, et al. Declining vulnerability to temperature-related mortality in London over the 20th century[J]. Am J Epidemiol, 2006, 164(1): 77-84.
[28] 谷少华,贺天锋,陆蓓蓓,等.基于分布滞后非线性模型的归因风险评估方法及应用[J].中国卫生统计, 2016, 33(6): 959-962. GU Shaohua, HE Tianfeng, LU Peipei, et al. Measures and application for attributable risk from distributed lag non-linear model[J]. Chinese Journal of Health Statistics, 2016, 33(6): 959-962.
[29] 翟屹,胡建平,孔灵芝,等.中国居民高血压造成冠心病和脑卒中的经济负担研究[J].中华流行病学杂志, 2006, 27(9): 744-747. ZHAI Yi, HU Jianping, KONG Lingzhi, et al. Economic burden of coronary heart disease and stoke attributable to hypertension in China[J]. Chinese Journal of Epidemiology, 2006, 27(9): 744-747.
[30] Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data[J]. Lancet, 2005, 365(9455): 217-223.
[31] Keatinge WR, Coleshaw SR, Easton JC, et al. Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis[J]. Am J Med, 1986, 81(5): 795-800.
[32] [No authors listed]. Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling[J]. Br Med J(Clin Res Ed), 1985, 290(6461): 74-75.
[33] Bamett AG. Temperature and cardiovascular deaths in the US elderly: changes over time[J]. Epidemiology, 2007, 18(3): 369-372.
[34] Gasparrini A, Guo Y, Hashizume M, et al. Temporal variation in heat-mortality associations: a multicountry study[J]. Environ Health Perspect, 2015, 123(11): 1200-1207.
[35] 王敏珍,郑山,王式功,等.气温与湿度的交互作用对呼吸系统疾病的影响[J]. 中国环境科学, 2016, 36(2): 581-588. WANG Minzhen, ZHENG Shan, WANG Shigong, et al. Interaction of temperature and relative humidity on emergency room visits for respiratory diseases[J]. China Environmental Science, 2016, 36(2): 581-588.
[36] Son JY, Lee JT, Anderson GB, et al. The impact of heat waves on mortality in seven major cities in Korea[J]. Environ Health Persp, 2012, 120(4): 566-571.
[37] Wu W, Xiao Y, Li G, et al. Temperature-mortality relationship in four subtropical Chinese cities: a time-series study using a distributed lag non-linear model[J]. Sci Total Environ, 2013, 449: 355-362. doi: 10.1016/j.scitotenv.2013.01.090.
[38] Yu W, Mengersen K, Wang X, et al. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence[J]. Int J Biometeorol, 2012, 56(4): 569-581.
[39] Yang J, Ou CQ, Yan D, et al. Daily temperature and mortality: a study of distributed lag non-linear effect and effect modification in Guangzhou[J]. Environ Health, 2012, 11: 63. doi: 10.1186/1476-069X-11-63.
[40] Blatteis CM. Age-dependent changes in temperature regulation—a mini review[J]. Gerontology, 2012, 58(4): 289-295.
[41] 国家卫生和计划生育委员会. 2011中国卫生统计年鉴[M]. 北京:中国协和医科大学出版社,2013.
[42] Bell ML, Dominici F. Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities[J]. Am J Epidemiol, 2008, 167(8): 986-997.
[43] Medina-Ramón M, Zanobetti A, Cavanagh DP, et al. Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis[J]. Environ Health Perspect, 2006, 114(9): 1331-1336.
[44] Bell ML, Zanobetti A, Dominici F. Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: a systematic review and meta-analysis[J]. Am J Epidemiol, 2013, 178(6): 865-876.
[45] Li J, Xu X, Wang J, et al. Analysis of a community-based intervention to reduce heat-related illness during heat waves in Licheng, China: a quasi-experimental study[J]. Biomed Environ Sci, 2016, 29(11): 802-813.
[1] 姜卉,魏甜,李建平,王聪. 葛根素对索拉非尼心肌毒性的保护及作用机制[J]. 山东大学学报 (医学版), 2022, 60(8): 14-22.
[2] 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82.
[3] 刘盈,杨淑霞,佘凯丽,程传龙,房启迪,韩闯,崔峰,李秀君. 2019年山东省淄博市居民死因及疾病负担探析[J]. 山东大学学报 (医学版), 2022, 60(6): 114-121.
[4] 郝强,高琦,赵然,王海涛,刘志东,姜宝法. 2014~2016年气温和相对湿度对深圳市5岁以下儿童轮状病毒腹泻的影响[J]. 山东大学学报 (医学版), 2022, 60(2): 89-95.
[5] 毕凤英,闫冬勤,陈曦,罗丹. HIV感染者/艾滋病患者自杀死亡危险因素理论框架构建——基于扎根理论的定性研究[J]. 山东大学学报 (医学版), 2022, 60(1): 109-117.
[6] 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55.
[7] 许怀悦,王情,马润美,班婕,李湉湉. 温度相关的疾病负担研究进展[J]. 山东大学学报 (医学版), 2021, 59(12): 13-19, 32.
[8] 邓清文,刘文彬. 心血管疾病患者健康相关生命质量及其影响因素的多水平模型分析[J]. 山东大学学报 (医学版), 2020, 1(7): 115-121.
[9] 杨珍,张艳敏,王倩倩,陈惠敏,冯强,周少英. 微小RNA-103及RNA-107表达与120例脓毒症患者临床特征及预后的关联分析[J]. 山东大学学报 (医学版), 2020, 58(12): 77-85.
[10] 李佳蔚,魏然,张安然,胡文琦,林君芬,马伟. 热带气旋与医院门诊呼吸系统疾病日就诊量的病例交叉研究[J]. 山东大学学报 (医学版), 2018, 56(8): 43-49.
[11] 张安然,胡文琦,李佳蔚,魏然,马伟. 热浪对居民循环系统疾病死亡影响的病例交叉研究[J]. 山东大学学报 (医学版), 2018, 56(8): 56-62.
[12] 张智慧,王丽丽,高华,张健,李娟,李远,武春晓,卢志明. 肺腺癌中缺氧诱导因子-1α调控程序性死亡因子配体1的表达[J]. 山东大学学报(医学版), 2017, 55(4): 65-70.
[13] 于晓琳,张军,杨柳,周林,崔亮亮,张济. 济南市慢性阻塞性肺部疾病患者在流感季呼吸系统疾病的罹患特征[J]. 山东大学学报(医学版), 2017, 55(3): 79-82.
[14] 杨柳,周林,张军,王莹,刘守钦. 2011―2015年济南市道路交通伤害死亡病例特征[J]. 山东大学学报 (医学版), 2017, 55(12): 77-81.
[15] 韩京,张军,周林,房巧玲,刘守钦,张济,张颖. 极端气温对济南市心脑血管疾病死亡的影响[J]. 山东大学学报(医学版), 2017, 55(11): 71-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!