Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (12): 96-101.doi: 10.6040/j.issn.1671-7554.0.2024.1010

• Clinical Medicine • Previous Articles    

Role of PAR-2 during Aspergillus fumigatus infection in human corneal epithelial cells

NIU Yawen, LI Fengjiao   

  1. Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong China
  • Published:2024-12-09

Abstract: Objective To investigate the expression and function of protease activated receptor-2(PAR-2)in human corneal epithelial cells(HCECs)stimulated with Aspergillus fumigatus(A. fumigatus). Methods 75% ethanol-killed A. fumigatus stimulated HCECs, and PAR-2 mRNA and protein expressions were tested by RT-qPCR and Western blotting. HCECs were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of FSLLRY-NH2, PCR, Western blotting, and ELISA tested the expressions of IL-1β, TNF-α and p-p38. Results In HCECs, PAR-2 mRNA and protein expressions were significantly increased by A. fumigatus. A. fumigatus upregulated IL-1β, TNF-α and p-p38 expressions levels. FSLLRY-NH2 significantly inhibited IL-1β, TNF-α and p-p38 expressions compared with infected control. Conclusion A. fumigates stimulation increases PAR-2 expression and upregulates cytokine expression levels though the PAR-2/p-p38 pathway.

Key words: Protease activated receptor-2, Corneal epithelial cells, Aspergillus fumigatus, Cytokines, Signal pathway

CLC Number: 

  • R772.2
[1] 庞金鼎, 韦振宇, 曹凯, 等. 不同抗真菌药物治疗真菌性角膜炎有效性和安全性的网状Meta分析[J]. 中华实验眼科杂志, 2024, 42(7): 629-637. PANG Jinding, WEI Zhenyu, CAO Kai, et al. A network meta-analysis of the efficacy and safety of different antifungal drugs for fungal keratitis[J]. Chinese Journal of Experimental Ophthalmology, 2024, 42(7): 629-637.
[2] 戴晨阳,郭慧. 白细胞介素-36在真菌性角膜炎中的免疫作用及机制[J]. 山东大学学报(医学版), 2024, 62(8): 67-73. DAI Chenyang, GUO Hui. Progress in the immune effect and mechanism of IL-36 in fungal keratitis[J]. Journal of Shandong University(Health Sciences), 2024, 62(8): 67-73.
[3] Brown L, Leck AK, Gichangi M, et al. The global incidence and diagnosis of fungal keratitis[J]. Lancet Infect Dis, 2021, 21(3): 49-57.
[4] 周晓丹, 杨玉倩, 徐强崧. 真菌性角膜炎的致病菌菌属和转归及其影响因素分析[J]. 国际眼科杂志, 2022, 22(11): 1892-1895. ZHOU Xiaodan, YANG Yuqian, XU Qiangsong. Analysis of pathogenic bacterial Genera and outcome of fungal keratitis and their influencing factors[J]. International Eye Science, 2022, 22(11): 1892-1895.
[5] Mahmoudi S, Masoomi A, Ahmadikia K, et al. Fungal keratitis: an overview of clinical and laboratory aspects[J]. Mycoses, 2018, 61(12): 916-930.
[6] Mills B, Radhakrishnan N, Karthikeyan Rajapandian SG, et al. The role of fungi in fungal keratitis[J]. Exp Eye Res, 2021, 202: 108372. doi:10.1016/j.exer.2020.108372.
[7] Heinekamp T, Schmidt H, Lapp K, et al. Interference of Aspergillus fumigatus with the immune response[J]. Semin Immunopathol, 2015, 37(2): 141-152.
[8] Shpacovitch V, Feld M, Bunnett NW, et al. Protease-activated receptors: novel PARtners in innate immunity[J].Trends Immunol, 2007, 28(12): 541-550.
[9] Moretti S, Bellocchio S, Bonifazi P, et al. The contribution of PARs to inflammation and immunity to fungi[J]. Mucosal Immunol, 2008, 1(2): 156-168.
[10] Rayees S, Joshi JC, Joshi B, et al. Protease-activated receptor 2 promotes clearance of Pseudomonas aeruginosa infection by inducing cAMP-Rac1 signaling in alveolar macrophages[J]. Front Pharmacol, 2022, 13: 874197. doi:10.3389/fphar.2022.874197.
[11] Lee SE, Kim JM, Jeong SK, et al. Protease-activated receptor-2 mediates the expression of inflammatory cytokines, antimicrobial peptides, and matrix metalloproteinases in keratinocytes in response to Propionibacterium acnes[J]. Arch Dermatol Res, 2010, 302(10): 745-756.
[12] Niu YW, Zhao GQ, Li C, et al. Aspergillus fumigatus increased PAR-2 expression and elevated proinflammatory cytokines expression through the pathway of PAR-2/ERK1/2 in Cornea[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 166-175.
[13] Rivas CM, Schiff HV, Moutal A, et al. Alternaria alternata-induced airway epithelial signaling and inflammatory responses via protease-activated receptor-2 expression[J]. Biochem Biophys Res Commun, 2022, 591: 13-19. doi:10.1016/j.bbrc.2021.12.090.
[14] Tripathi T, Abdi M, Alizadeh H. Protease-activated receptor 2(PAR2)is upregulated by Acanthamoeba plasminogen activator(aPA)and induces proinflammatory cytokine in human corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2014, 55(6): 3912-3921.
[15] Wilson SE, Torricelli AAM, Marino GK. Corneal epithelial basement membrane: structure, function and regeneration[J]. Exp Eye Res, 2020, 194: 108002. doi:10.1016/j.exer.2020.108002.
[16] Chi MH, Gu LW, Zhang LN, et al. Pentoxifylline treats Aspergillus fumigatus keratitis by reducing fungal burden and suppressing corneal inflammation[J]. Eur J Pharmacol, 2023, 945: 175607. doi:10.1016/j.ejphar.2023.175607.
[17] Wang Ms J, Kang Ms X, Huang Ms ZQ, et al. Protease-activated receptor-2 decreased zonula occlidens-1 and claudin-1 expression and induced epithelial barrier dysfunction in allergic rhinitis[J]. Am J Rhinol Allergy, 2021, 35(1): 26-35.
[18] Matos NLA, Oliveira Lima OSC, DA Silva JF, et al. Blockade of protease-activated receptor 2 attenuates allergenmediated acute lung inflammation and leukocyte recruitment in mice[J]. J Biosci, 2022, 47: 2.
[19] Silva IS, Almeida AD, Lima Filho ACM, et al. Platelet-activating factor and protease-activated receptor 2 cooperate to promote neutrophil recruitment and lung inflammation through nuclear factor-kappa B transactivation[J]. Sci Rep, 2023, 13(1): 21637. doi:10.1038/s41598-023-48365-1.
[20] de Almeida AD, Silva IS, Fernandes-Braga W, et al. A role for mast cells and mast cell tryptase in driving neutrophil recruitment in LPS-induced lung inflammation via protease-activated receptor 2 in mice[J]. Inflamm Res, 2020, 69(10): 1059-1070.
[21] Chao HH, Chen PY, Hao WR, et al. Lipopolysaccharide pretreatment increases protease-activated receptor-2 expression and monocyte chemoattractant protein-1 secretion in vascular endothelial cells[J]. J Biomed Sci, 2017, 24(1): 85. doi:10.1186/s12929-017-0393-1.
[22] Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling[J]. Biochem J, 2010, 429(3): 403-417.
[23] Wang JH, Liu YJ, Guo YS, et al. Function and inhibition of P38 MAP kinase signaling: targeting multiple inflammation diseases[J]. Biochem Pharmacol, 2024, 220: 115973. doi:10.1016/j.bcp.2023.115973.
[24] Sarg NH, Zaher DM, Abu Jayab NN, et al. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts[J]. Biochem Pharmacol, 2024, 225: 116307. doi:10.1016/j.bcp.2024.116307.
[25] Saleem S. Targeting MAPK signaling: a promising approach for treating inflammatory lung disease[J]. Pathol Res Pract, 2024, 254: 155122. doi:10.1016/j.prp.2024.155122.
[26] Niu YW, Lin J, Li C, et al. Galectin-3 plays an important pro-inflammatory role in A. fumigatus keratitis by recruiting neutrophils and activating p38 in neutrophils[J]. Int Immunopharmacol, 2021, 97: 107706. doi:10.1016/j.intimp.2021.107706.
[27] Wang Q, Zhao GQ, Lin J, et al. Role of the mannose receptor during Aspergillus fumigatus infection and interaction with dectin-1 in corneal epithelial cells[J]. Cornea, 2016, 35(2): 267-273.
[28] Diao WL, Yin M, Qi YH, et al. Resveratrol has neuroprotective effects and plays an anti-inflammatory role through Dectin-1/p38 pathway in Aspergillus fumigatus keratitis[J]. Cytokine, 2024, 179: 156626. doi:10.1016/j.cyto.2024.156626.
[29] Jia YY, Li C, Yin M, et al. Kaempferol ameliorate the prognosis of Aspergillus fumigatus keratitis by reducing fungal load and inhibiting the Dectin-1 and p38 MAPK pathway[J]. Exp Eye Res, 2022, 216: 108960. doi:10.1016/j.exer.2022.108960.
[1] ZHANG Jintao, DONG Liang. Airway epithelium and epithelial-derived cytokines in asthma: reflection and outlook [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 1-6.
[2] WU Fei, LI Qingli, XIAO Zhenwei. Causal association between cytokines and chronic kidney disease based on Mendelian randomization [J]. Journal of Shandong University (Health Sciences), 2024, 62(11): 85-95.
[3] QIN Jinjin, CAO Chenyuan, XING Jiejie, AN Yan, HUANG Yuxiang. Predication and bioinformatics analysis of preeclampsia-related Siglec-6 core genes [J]. Journal of Shandong University (Health Sciences), 2024, 62(1): 31-37.
[4] ZHANG Xiufang, LI Peizheng, ZHANG Bohan, SUN Congcong, LIU Yiming. Protective effect and mechanism of growth differentiation factor-15 in LPS-induced models of Parkinsons disease [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 1-7.
[5] SHEN Xiaochang, SUN Yiqing, YAN Lei, ZHAO Xingbo. Expression of aryl hydrocarbon receptor nuclear translocator-like 2 in endometrial cancer [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 74-80.
[6] LI Huayu, SHI Xiaohan, ZHANG Xinrui, LI Feng. Association between sleep disturbance and inflammatory cytokines in 203 patients with glioma [J]. Journal of Shandong University (Health Sciences), 2022, 60(12): 26-30.
[7] LI Na, GUO Zengli, CHI Lingyi, YANG Lizhuo, MA Zhiyong, FU Zhijie. Mechanism of acute injury of eosinophil EOL-1 induced by formaldehyde [J]. Journal of Shandong University (Health Sciences), 2022, 60(11): 54-62.
[8] ZHANG Weiwei, HUA Fang, LIANG Chaoshuai, CHU Miaomiao, SUN Jiayi, FRANK Zaucke, XIN Wei. Thyroid stimulating hormone promotes chondrocyte differentiation via anti-inflammatory protein CTRP3 [J]. Journal of Shandong University (Health Sciences), 2022, 60(10): 1-8.
[9] GE Shaohua, DING Tian, LIU Hongrui. Role and regulatory mechanism of type 2 immunity in tissue repair [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 51-56.
[10] LI Xiangqing, YIN Xin, ZHAO Xuelian, ZHAO Peiqing. Expression and clinical significance of circulating CD56bright subset of NK cells in patients with Parkinsons disease [J]. Journal of Shandong University (Health Sciences), 2021, 59(2): 34-40.
[11] CAI Qiujing, ZHANG Qian, HE Xuejia, SUN Wenli, GUO Aili, ZHANG Nan, ZHU Weiwei. Airway smooth muscle cells regulate IL-33 expression through TGF-β1/Smad3 signaling pathway to participate in asthma [J]. Journal of Shandong University (Health Sciences), 2020, 58(4): 78-83.
[12] GUO Hehe, SUN Zhiqiang, LIU Yanjuan, LIU Yichen, LI Guang, ZHENG Fang. Norcantharidin influences the expression of Notch signal pathway in multiple myeloma U226 cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(3): 32-37.
[13] LI Jian, XU Bing, YAN Xinfeng, XU Wanju, CHANG Xiaotian. Screening key genes for TXNDC5 and insulin signaling pathway [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(3): 88-93.
[14] WANG Qingshi, CHEN Yunzhen, LIU Haichun, WU Wenliang, JIAO Guangjun, LI Xiaofeng, XU Daxia. Effects of inflammatory cytokines secreted by nucleus pulposus cells on proliferation and osteogenic ability of posterior longitudinal ligament fibroblasts [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(6): 22-26.
[15] ZHANG Chunxia, ZOU Cunhua, SONG Dongdong, YU Jiang. Effects of P38 mitogen-activated protein kinase signal pathway on the expression of urokinase-type plasminogen activator in ovarian cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(2): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!