JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES) ›› 2017, Vol. 55 ›› Issue (6): 56-60.doi: 10.6040/j.issn.1671-7554.0.2017.356

Previous Articles     Next Articles

Risk prediction model of cardiovascular disease based on health management cohort

LI Jiqing1,2, ZHAO Huanzong3, SONG Binghong3, ZHANG Lichun3, LI Xiangyi1,2, CHEN Yafei1,2, WANG Ping4, XUE Fuzhong1,2   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Cheeloo Research Center for Biomedical Big Data, Shandong University, Jinan 250012, Shandong, China;
    3. Health Examination Center, Linyi Peoples Hospital, Linyi 276000, Shandong, China;
    4. Operating Room of Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
  • Received:2017-04-26 Online:2017-06-10 Published:2017-06-10

Abstract: Objective To establish a model to evaluate the risk of cardiovascular disease(CVD)among health management population. Methods The cohort consisted of 72 843 individuals who had physical check-up at Shandong Multi-center Longitudinal Cohort for Health Management. They were all free of CVD events. We randomly divided the cohort into the training group(70%)and testing group(30%). Cox proportional hazards regression model was applied to choose risk factors of CVD, competing risk prediction model was used to establish a prediction model for CVD, and ten-fold cross validation was used to test the stability of the model. Discriminatory ability was determined by the area under the receiver operating characteristic curve(AUC). Results There were 2 463 CVD cases during the study period and the incidence was 88.79/1 000 person-year, and 164 people died of other causes. The risk factors included age, 山 东 大 学 学 报 (医 学 版)55卷6期 -李吉庆,等.基于健康管理队列的心血管事件风险预测模型 \=-smoke, BMI, hypertension, diabetes, dyslipidemia, ST-T segment changes, T wave change, abnormal Q wave, arrhythmia and chronic kidney diseases. The estimated AUC of the model in the training group was 0.837(95%CI: 0.821-0.854)for males and 0.897(95%CI:0.880-0.913)for females. The estimated AUC of the model in the testing group was 0.838(95%CI:0.813-0.862)for males and 0.893(95%CI:0.872-0.914)for females. Conclusion The risk prediction model can be used to screen high-risk subjects of CVD in health management population.

Key words: Cardiovascular event, Health management, Risk prediction model

CLC Number: 

  • R541
[1] 吴兆苏. 中国心血管病预防指南简介[J]. 岭南心血管病杂志, 2011(S1):36-37.
[2] 张啸飞, 胡大一, 丁荣晶, 等. 中国心脑血管疾病死亡现况及流行趋势[J]. 中华高血压杂志, 2012, 20(6):600.
[3] D'Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study[J]. Circulation, 2008, 117(6): 743-753.
[4] 刘静, 赵冬, 秦兰萍, 等. 低密度脂蛋白胆固醇与心血管病发病关系的前瞻性研究[J]. 中华心血管病杂志, 2001, 29(9): 561-565. LIU Jing, ZHAO Dong, QIN Lanping, et al. Association of low density lipoprotein cholesterol with cardiovascular disease in a prospective study[J]. Chin J Cardiol, 2001, 29(9): 561-565.
[5] 吴兆苏, 姚崇华, 赵冬. 中国多省市心血管病趋势及决定因素的人群监测(中国MONICA方案)Ⅲ.危险因素水平与心血管病的联系[J]. 中华心血管病杂志, 1998, 26(2): 85-88. WU Zhaosu, YAO Chonghua, ZHAO Dong, et al. Multi-provincial monitoring of the trends and determinants of cardiovascular diseases(Sino-MONICA project)-III. Association between risk factor levels and cardiovascular disease[J]. Chin J Cardiol, 1998, 26(2): 85-88.
[6] 刘静, 赵冬, 王薇, 等.中国多省市心血管病危险因素队列研究与美国弗莱明翰心脏研究结果的比较[J]. 中华心血管病杂志, 2004, 32(2):167-172. LIU Jing, ZHAO Dong, WANG Wei, et al. Comparison between the results from the Chinese Multi-provincial Cohort Study and those from the Framingham Heart Study[J]. Chin J Cardiol, 2004, 32(2): 167-172.
[7] 王薇, 赵冬, 刘静, 等. 中国35~64岁人群心血管病危险因素与发病危险预测模型的前瞻性研究[J]. 中华心血管病杂志, 2003, 31(12): 902-908. WANG Wei, ZHAO Dong, LIU Jing, et al. Prospective study on the predictive model of cardiovascular disease risk in a Chinese population aged 35-64[J]. Chin J Cardiol, 2003, 31(12): 902-908.
[8] 何疆春,李田昌. 心血管疾病风险评估的现状与展望[J]. 心血管病学进展, 2013, 34(1): 50-55. HE Jiangchun, LI Tianchang. Current situation of and prospects for cardiovascular disease risk assessment[J]. Advance in Cardiovascular Disease, 2013, 34(1): 50-55.
[9] 中国高血压防治指南修订委员会. 中国高血压防治指南2010[J]. 中华心血管病杂志, 2011,39(7):579-616. Writing Group of 2010 Chinese Guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension[J]. Chin J Cardiol, 2011, 39(7):579-616.
[10] 范国洽, 郝慧斌, 杨昱, 等. 2013版《中国2型糖尿病防治指南》解读[J]. 中国临床医生杂志, 2015, 43(10): 92-94.
[11] 高秀芳, 李勇. 《中国成人血脂异常防治指南2016修订版》更新要点解析[J]. 中华高血压杂志, 2017, 25(1): 15-18.
[12] Jason P. Fine, Robert J. Gray. A proportional hazards model for the subdistribution of a competing risk[J]. J Am Stat Assoc, 1999, 94(446):496-509.
[13] Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians[J]. Bone Marrow Transplantation, 2007, 40(4): 381-387.
[14] Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves[J]. BMC Bioinformatics, 2011, 12(1): 77.
[15] Anderson KM, Wilson PW, Odell PM, et al. An updated coronary risk profile. A statement for health professionals[J]. Circulation, 1991, 83(1):356-362.
[16] 王薇, 赵冬. 中国心脑血管病流行特征转化规律、影响因素及预防策略研究与应用[J]. 中华心血管病杂志, 2013, 41(11): 992.
[17] 周北凡. 中国人群心血管病危险因素作用特点的前瞻性研究[J]. 中华流行病学杂志, 2005, 26(1): 58-61.
[18] Wilson PWF, Levy D, Belanger AM, et al. Prediction of coronary heart disease using risk factor categories[J]. Circulation, 1998, 97(18):1837-1847.
[19] Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project[J]. Eur Heart J, 2003, 24(11):987-1003.
[20] Nishimura K, Okamura T, Watanabe M, et al. Predicting coronary heart disease using risk factor categories for a Japanese urban population, and comparison with the Framingham risk score: the suita study[J]. J Atheroscler Thromb, 2014, 21(8):784.
[21] 饶栩栩, 陈百玲, 麦劲壮, 等. 队列人群心电图ST-T异常与死亡及心脑血管事件关系的前瞻性观察[J].中华心血管病杂志, 2004, 32(3):258-263. RAO Xuxu, CHEN Bailing, MAI Jinzhuang, et al. A prospective cohort study on the relationship of abnormal ST-T on electrocardiogram with death[J]. Chin J Cardiol, 2004, 32(3):258-263.
[22] 张义峰, 高晓丽, 郭忠则. 心电图ST-T异常改变与心脑血管事件的关系[J].江苏实用心电学杂志, 2005, 14(1):29-30.
[23] Verrier RL, Sroubek J. Quantitative T-wave alternans analysis for sudden cardiac death risk assessment and guiding therapy: answered and unanswered questions: For: proceedings of ICE2015 Comandatuba, Brazil, sudden death symposium[J]. J Electrocardiol, 2016, 49(3):429-438.
[24] Hanna EB, Glancy DL. ST-segment depression and T-wave inversion: classification, differential diagnosis and caveats[J]. Cleve Clin J Med, 2011, 78(6): 404-414.
[25] 刘龙, 汤哲, 李霞, 等. 基于竞争风险模型的北京市老年人群心血管疾病短期风险评估[J].首都医科大学学报, 2016, 37(2): 181-187. LIU Long, TANG Zhe, LI Xia, et al. A short-term risk assessment for cardiovascular diseases among the elderly in Beijing based on competing risk model[J]. Journal of Capital Medical University, 2016, 37(2): 181-187.
[1] LIU Yafei, XING Ping, XU Xiuqin, YANG Shufang, LIU Yanxun, YUAN Zhongshang, XUE Fuzhong. Shandong multi-center longitudinal cohort for health management: a brief introduction [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 30-36.
[2] YU Tao, LIU Huanle, FENG Xin, XU Fuyin, CHEN Yafei, XUE Fuzhong, ZHANG Chengqi. A hypertension risk prediction model based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 61-65.
[3] WANG Chunxia, XU Yibo, YANG Ning, XIA Bing, WANG Ping, XUE Fuzhong. A prediction model for coronary heart disease risks based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 66-71.
[4] ZHANG Guang, WANG Guangyin, WU Hongyan, ZHANG Hongyu, WANG Tingting, LI Jiqing, LI Min, KANG Fengling, LIU Yanxun, XUE Fuzhong. A prediction model of hyperlipidemia risk based on the health management population [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 72-76.
[5] SU Ping, YANG Yachao, YANG Yang, JI Jiadong, DAYIMU Alimu, LI Min, XUE Fuzhong, LIU Yanxun. Prediction models on the onset risks of type 2 diabetes among the health management population [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 82-86.
[6] SUN Yuanying, YANG Yachao, QU Mingling, CHEN Yanmin, LI Min, WANG Shukang, XUE Fuzhong, LIU Yunxia. A prediction model for metabolic syndrome risk: a study based on the health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 87-92.
[7] ZHOU Miao, XIA Tongyao, SUN Ailing, LI Ming, SHEN Zhenwei, BIAN Weiwei, JIANG Zheng, KANG Fengling, LIU Xiaojuan, XUE Fuzhong, LIU Jing. Risk prediction model of chronic kidney disease in health management population [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 98-103.
[8] LI Min, WANG Chunxia, XIA Bing, ZHU Qian, SUN Yuanying, WANG Shukang, XUE Fuzhong, JIA Hongying. A stroke prediction model for the health management population [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 93-97.
[9] YU Yuanyuan, WANG Chunxia, SU Ping, SUN Yuanying, XUE Fuzhong, LIU Yanxun. A prediction model to estimate risks of cataract based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 104-107.
[10] LIU Xiaojuan, JIANG Zheng, KANG Fengling, ZHOU Miao, LIN Weiqiang, XUE Fuzhong. Association between neutrophil count and nonalcoholic fatty liver disease:a prospective cohort study [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 119-123.
[11] WANG Wen-wen1, CHEN Yu-guo2. Significance of detecting GRACE and TIMI scores for risk stratification and prognosis in patients with acute coronary syndrome [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(10): 54-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!