Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (11): 36-45.doi: 10.6040/j.issn.1671-7554.0.2025.0344

• Clinical Medicine • Previous Articles    

Value of tNGS testing and conventional culture for BALF in the diagnosis of NSCLC complicated with IPFD

LIU Zhenkun1, LYU Jiling2, XU Weiwei3, MA Litian4,5,6, ZHANG Caiqing1,2   

  1. 1. Qilu Medical College of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan 250022, Shandong, China;
    3. Department of Pediatrics, Shandong Second Provincial General Hospital, Jian 250022, Shandong, China;
    4. Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xian 710038, Shaanxi, China;
    5. Department of Integrated Traditional Chinese and Western Medicine Oncology, Tangdu Hospital, Air Force Military Medical University, Xian 710038, Shaanxi, China;
    6. Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Tumor Diagnosis and Treatment, Xian 710038, Shaanxi, China
  • Published:2025-11-28

Abstract: Objective To investigate the diagnostic value of targeted next-generation sequencing(tNGS)for pathogens in bronchoalveolar lavage fluid(BALF)compared with traditional culture in non-small cell lung cancer(NSCLC)complicated with invasive pulmonary fungal disease(IPFD). Methods A retrospective analysis was conducted on the clinical data of 40 patients clinically diagnosed with NSCLC complicated with IPFD at Shandong Second Provincial General Hospital from September 1, 2022, to April 1, 2025. BALF samples were collected for tNGS detection and traditional culture, and the pathogen detection rates and diagnostic efficacy were compared and analyzed. Results Among the 40 IPFD patient samples, the positive detection rates for fungi by tNGS and traditional culture were 85.0% and 52.5%, respectively(corrected χ2=6.86, P=0.01), and for bacteria, they were 70.0% and 50.0%, respectively(corrected χ2=4.08, P=0.04). The detection sensitivities for bacteria by tNGS and traditional culture were 95.5% and 86.4%, respectively(corrected χ2=0.25, P=0.62). All patients improved and were discharged after antifungal, antibacterial, and antitumor treatments. Conclusion tNGS technology demonstrates significantly superior detection efficacy for both fungi and bacteria in pathogen detection for NSCLC complicated with IPFD compared to traditional BALF culture. Clinically, tNGS can be used as an early screening tool, and combined with BALF culture and clinical features for comprehensive interpretation, to optimize diagnosis and treatment and avoid overtreatment.

Key words: Non-small cell lung cancer, Invasive pulmonary fungal disease, Bronchoalveolar lavage fluid, Targeted next-generation sequencing, Diagnostic value

CLC Number: 

  • R735.6
[1] Popat S, Mok T, Yang JC, et al. Afatinib in the treatment of EGFR mutation-positive NSCLC: a network meta-analysis[J]. Lung Cancer, 2014, 85(2): 230-238.
[2] Zhang RM, Wu Y, Deng GC, et al. Value of sputum Gram stain, sputum culture, and bronchoalveolar lavage fluid Gram stain in predicting single bacterial pathogen among children with community-acquired pneumonia[J]. BMC Pulm Med, 2022, 22(1): 427. doi:10.1186/s12890-022-02234-1
[3] Collins ME, Popowitch EB, Miller MB. Evaluation of a novel multiplex PCR panel compared to quantitative bacterial culture for diagnosis of lower respiratory tract infections[J]. J Clin Microbiol, 2020, 58(5): e02013-19. doi:10.1128/JCM.02013-19
[4] Zhu N, Lin S, Weng X, et al. Performance of the colloidal gold immunochromatography of cryptococcal antigen on bronchoalveolar lavage fluid for the diagnosis of pulmonary cryptococcosis[J]. Can J Infect Dis Med Microbiol, 2022, 2022: 7876030. doi:10.1155/2022/7876030
[5] Wang D, Wang WL, Ding YJ, et al. Metagenomic next-generation sequencing successfully detects pulmonary infectious pathogens in children with hematologic malignancy[J]. Front Cell Infect Microbiol, 2022, 12: 899028. doi:10.3389/fcimb.2022.899028
[6] Ebinger A, Fischer S, Höper D. A theoretical and genera-lized approach for the assessment of the sample-specific limit of detection for clinical metagenomics[J]. Comput Struct Biotechnol J, 2020, 19: 732-742. doi:10.1016/j.csbj.2020.12.040
[7] Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530.
[8] 世界华人医学真菌专业委员会. 侵袭性肺真菌病诊断路径专家共识(2024版)[J]. 中华检验医学杂志, 2025, 48(4): 459-468. World Society of Chinese Medical Mycology. Expert consensus on the diagnostic pathway for invasive pulmonary fungal disease(2024)[J]. Chinese Journal of Laboratory Medicine, 2025, 48(4): 459-468.
[9] Meyer KC, Raghu G, Baughman RP, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease[J]. Am J Respir Crit Care Med, 2012, 185(9): 1004-1014.
[10] 陶锋, 李一荣, 周艳梅, 等. 靶向宏基因组测序技术在不明原因肺部感染病原学诊断中的价值[J]. 中国病原生物学杂志, 2024, 19(11): 1290-1294. TAO Feng, LI Yirong, ZHOU Yanmei, et al. Targeted metagenomic sequencing in the diagnosis of pulmonary infection of unknown etiology [J]. Journal of Pathogen Biology, 2024, 19(11): 1290-1294.
[11] 颜新生, 张丹, 王栋, 等. 疑似肺炎患者BALF样本应用tNGS技术进行病原学诊断的价值研究[J]. 现代检验医学杂志, 2023, 38(5): 12-16. YAN Xinsheng, ZHANG Dan, WANG Dong, et al. Value of tNGS in the etiological diagnosis of BALF samples from suspected pneumonia patients [J]. Journal of Modern Laboratory Medicine, 2023, 38(5): 12-16.
[12] 母发光, 何海兰, 李晶. 儿童侵袭性肺部真菌感染危险因素分析[J].中国当代儿科杂志, 2014, 16(8): 779-782. MU Faguang, HE Hailan, LI Jing. Risk factors for invasive pulmonary fungal infection in children[J]. Chinese Journal of Contemporary Pediatrics, 2014, 16(8): 779-782.
[13] Jaggi TK, Agarwal R, Tiew PY, et al. Fungal lung di-sease[J]. Eur Respir J, 2024, 64(5): 2400803. doi:10.1183/13993003.00803-2024
[14] Li Z, Lu G, Meng GX. Pathogenic fungal infection in the lung[J]. Front Immunol, 2019, 10: 1524. doi:10.3389/fimmu.2019.01524
[15] Ianiri G, Idnurm A. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization[J]. mBio, 2015, 6(2): e02334-14. doi:10.1128/mBio.02334-14
[16] Bassetti M, Garnacho-Montero J, Calandra T, et al. Intensive care medicine research agenda on invasive fungal infection in critically ill patients[J]. Intensive Care Med, 2017, 43(9): 1225-1238.
[17] Bajaj JS, Reddy RK, Tandon P, et al. Prediction of fungal infection development and their impact on survival using the NACSELD cohort[J]. Am J Gastroenterol, 2018, 113(4): 556-563.
[18] Salazar F, Bignell E, Brown GD, et al. Pathogenesis of respiratory viral and fungal coinfections[J]. Clin Microbiol Rev, 2022, 35(1): e0009421. doi:10.1128/CMR.00094-21
[19] Marr KA, Platt A, Tornheim JA, et al. Aspergillosis complicating severe coronavirus disease[J]. Emerg Infect Dis, 2021, 27(1): 18-25.
[20] White PL, Dhillon R, Cordey A, et al. A national strategy to diagnose coronavirus disease 2019-associated invasive fungal disease in the intensive care unit[J]. Clin Infect Dis, 2021, 73(7): e1634-e1644.
[21] Patel A, Agarwal R, Rudramurthy SM, et al. Multicenter epidemiologic study of coronavirus disease-associated mucormycosis, India[J]. Emerg Infect Dis, 2021, 27(9): 2349-2359.
[22] Paavai TT, Vasanthi V, Rameshkumar A, et al. Maxillary mucormycotic osteonecrosis as a manifestation of post-COVID-19 infection in non-diabetic patients: report of two cases[J]. J Microsc Ultrastruct, 2023, 12(2): 99-103.
[23] Barchiesi F, Orsetti E, Mazzanti S, et al. Candidemia in the elderly: what does it change?[J]. PLoS One, 2017, 12(5): e0176576. doi:10.1371/journal.pone.0176576
[24] Burguete SR, Maselli DJ, Fernandez JF, et al. Lung transplant infection[J]. Respirology, 2013, 18(1): 22-38.
[25] Boch T, Spiess B, Cornely OA, et al. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1, 3-β-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: results of a prospective multicentre study[J]. Clin Microbiol Infect, 2016, 22(10): 862-868.
[26] Linder KA, Kauffman CA, Zhou SW, et al. Performance of the(1, 3)-beta-D-glucan assay on bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis[J]. Mycopathologia, 2020, 185(5): 925-929.
[27] 李晗婷, 韩小雨, 郑雨婷, 等. 肺部侵袭性曲霉菌和白色念珠菌感染的临床与CT表现比较[J]. 临床放射学杂志, 2024, 43(4): 543-548. LI Hanting, HAN Xiaoyu, ZHENG Yuting, et al. Comparison of clinical and CT findings of invasive aspergillus and Candida albicans infections in the lung [J]. Journal of Clinical Radiology, 2024, 43(4): 543-548.
[28] 谷兴丽, 曹明芹, 徐思成, 等. 肺侵袭性真菌感染患者临床与影像学特征对真菌病原体的提示[J]. 中华急诊医学杂志, 2016, 25(7): 7. doi:10.3760/cma.j.issn.1671-0282.2016.07.016 GU Xingli, CAO Mingqin, XU Sicheng, et al. The predictive value of clinical and radiographic features in fungal pathogen identification in immunocompromised patients with pulmonary invasive fungal infection [J]. Chinese Journal of Emergency Medicine, 2016, 25(7): 7. doi:10.3760/cma.j.issn.1671-0282.2016.07.016
[29] Sevilha JB, Rodrigues RS, Barreto MM, et al. Infectious and non-infectious diseases causing the air crescent sign: a state-of-the-art review[J]. Lung, 2018, 196(1): 1-10.
[30] Patterson TF, Thompson GR, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America[J]. Clin Infect Dis, 2016, 63(4): e1-e60.
[31] Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review[J]. Eur Respir Rev, 2011, 20(121): 156-174.
[32] Alsayed AR, Abed A, Khader HA, et al. Molecular accounting and profiling of human respiratory microbial communities: toward precision medicine by targeting the respiratory microbiome for disease diagnosis and treatment[J]. Int J Mol Sci, 2023, 24(4): 4086. doi:10.3390/ijms24044086
[33] Yagi K, Asai N, Huffnagle GB, et al. Early-life lung and gut microbiota development and respiratory syncytial virus infection[J]. Front Immunol, 2022, 13: 877771. doi:10.3389/fimmu.2022.877771
[34] Paglicci L, Borgo V, Lanzarone N, et al. Incidence and risk factors for respiratory tract bacterial colonization and infection in lung transplant recipients[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(6): 1271-1282.
[35] Vientós-Plotts AI, Ericsson AC, Rindt H, et al. Blood cultures and blood microbiota analysis as surrogates for bronchoalveolar lavage fluid analysis in dogs with bacterial pneumonia[J]. BMC Vet Res, 2021, 17(1): 129. doi:10.1186/s12917-021-02841-w
[36] Zhang XQ, Lei Y, Tan XL, et al. Optimization of early antimicrobial strategies for lung transplant recipients based on metagenomic next-generation sequencing[J]. Front Microbiol, 2022, 13: 839698. doi:10.3389/fmicb.2022.839698
[37] Deng ZF, Li CH, Wang YJ, et al. Targeted next-generation sequencing for pulmonary infection diagnosis in patients unsuitable for bronchoalveolar lavage[J]. Front Med, 2023, 10: 1321515. doi:10.3389/fmed.2023.1321515
[38] Poulsen SH, Søgaard KK, Fuursted K, et al. Evaluating the diagnostic accuracy and clinical utility of 16S and 18S rRNA gene targeted next-generation sequencing based on five years of clinical experience[J]. Infect Dis, 2023, 55(11): 767-775.
[39] Kildow BJ, Ryan SP, Danilkowicz R, et al. Next-generation sequencing not superior to culture in periprosthetic joint infection diagnosis[J]. Bone Joint J, 2021, 103-B(1): 26-31.
[40] Flurin L, Wolf MJ, Greenwood-Quaintance KE, et al. Targeted next generation sequencing for elbow periprosthetic joint infection diagnosis[J]. Diagn Microbiol Infect Dis, 2021, 101(2): 115448. doi:10.1016/j.diagmicrobio.2021.115448
[41] Uddin MKM, Cabibbe AM, Nasrin R, et al. Targeted next-generation sequencing of Mycobacterium tuberculosis from patient samples: lessons learned from high drug-resistant burden clinical settings in Bangladesh[J]. Emerg Microbes Infect, 2024, 13(1): 2392656. doi:10.1080/22221751.2024.2392656
[42] Bagratee TJ, Studholme DJ. Targeted genome sequencing for tuberculosis drug susceptibility testing in South Africa: a proposed diagnostic pipeline[J]. Access Microbiol, 2024, 6(2): 000740.v3. doi:10.1099/acmi.0.000740.v3
[43] Chen QY, Yi J, Liu YW, et al. Clinical diagnostic value of targeted next-generation sequencing for infectious diseases(Review)[J]. Mol Med Rep, 2024, 30(3): 153. doi:10.3892/mmr.2024.13277
[44] Murphy SG, Smith C, Lapierre P, et al. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing[J]. Front Public Health, 2023, 11: 1206056. doi:10.3389/fpubh.2023.1206056
[45] Zhang P, Liu BY, Zhang S, et al. Clinical application of targeted next-generation sequencing in severe pneumonia: a retrospective review[J]. Crit Care, 2024, 28(1): 225. doi:10.1186/s13054-024-05009-8
[1] ZHAO Hanqing, ZHOU Xinrui, LI Zijian, TANG Xing. Application of circulating tumor cells combined with serological detection in non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(5): 79-85.
[2] XU Nianxing, WEI Dong, QIAO Junjie, ZHAN Bingyan. Predictive value of CD8+, IL-6, and PaO2 for immunotherapy-triggered radiation recall pneumonitis in unresectable stage ⅢB/C and IV non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 29-35.
[3] QIN Jing, YANG Fei, CHEN Qian, XIA Handai, LIU Yanguo, WANG Xiuwen. A network meta-analysis of first-line treatment options for patients with advanced driver-gene wild-type and PD-L1 negative non-squamous non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2022, 60(7): 74-82.
[4] CHEN Zhaobo, FANG Min, XUE Haoran, LIU Chunyan. Deubiquitinase USP35 promotes the cells migration and invasion of non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 30-37.
[5] MA Ruijie, ZHU Liangming, ZUO Taiyang, LI Chunhai, ZHANG Nan, SUN Zhigang. Prognosis of microwave ablation for pulmonary oligometastases after radical resection of non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2022, 60(12): 63-68.
[6] ZHANG Amin, LI Guosheng, LI Fuhai. Bronchoalveolar lavage fluid cytokine profile contributes to discriminating local inflammation in children with mycoplasma lobar pneumonia [J]. Journal of Shandong University (Health Sciences), 2022, 60(11): 82-88.
[7] Huining LIU,Jun PENG,Yingchun REN,Guang YANG,Wenhao WANG,Jinfeng LIU,Qing TIAN. Comparison of 34 cases of thoracoscopic wedge resection and 21 cases of segmental resection for stage ⅠA1 non-small cell lung cancer in area P [J]. Journal of Shandong University (Health Sciences), 2022, 60(11): 38-43.
[8] DING Zichen, WANG Haohua, ZHOU Liwen, CONG Huiwen, LI Chengsheng, BAO Qihan, YANG Yi, WANG Lianyuan, WANG Suzhen, SHI Fuyan. Study on the individualized efficacy for non-small cell lung cancer patients based on Bayesian Additive Regression Tree model [J]. Journal of Shandong University (Health Sciences), 2022, 60(10): 92-98.
[9] LIU Xiaojing, XIA Xiyan, XIAO Ke, CHEN Wendan, ZHUANG Xuewei. Expression and clinical significance of exosomal long non-coding RNA OGFRP1 in 84 cases of non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 71-75.
[10] WEI Ping, DU Lutao, WANG Qing, ZHAN Yao, XIE Yujiao, ZHANG Shujun, DUAN Weili, WANG Chuanxin. Diagnostic value of serum exosomal miR-20b-5p for non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2019, 57(4): 91-96.
[11] WANG Wei, LIU Yongzheng, LI Ling. Effects of Physalin B on proliferation, migration and apoptosis of human non-small cell lung cancer cells [J]. Journal of Shandong University (Health Sciences), 2019, 57(3): 13-18.
[12] WANG Jianli, WANG Xiaojing, SUN Yulian, HU Xiaole, LUAN Xiaorong. Clinical effect of gefitinib combined with chemotherapy on patients with advanced non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2019, 57(11): 20-26.
[13] ZHENG Qingyue, ZHAO Qiuhong, QU Xiangyun, DONG Zhaonan, MA Xueqing, JIA Yunli. Diagnosis value of serum exosome miR-205-5p/miR-152-5p on early non-small cell lung cancer [J]. Journal of Shandong University (Health Sciences), 2019, 57(10): 101-106.
[14] XU Shuyuan, JI Quanjiang, GUO Li. Effects of serum levels of sEGFR, CEA and Cyfra21-1 on the prognosis of non-small cell lung cancer patients [J]. Journal of Shandong University (Health Sciences), 2019, 57(10): 107-111.
[15] SUN Qijing, CHEN Fangfang, LI Chunxiao, ZHANG Caiqing. Clinical value of PNI and HGB in evaluating the prognosis of the middle to late stage non-small cell lung cancer patients [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(4): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!