Journal of Shandong University (Health Sciences) ›› 2022, Vol. 60 ›› Issue (4): 10-16.doi: 10.6040/j.issn.1671-7554.0.2021.0175
• Expert Overview • Previous Articles Next Articles
Li KUANG1,*(),Xiaoming XU1,Qi ZENG2
CLC Number:
1 |
Naghavi M , Global Burden of Disease Self-Harm Collaborators . Global, regional, and national burden of suicide mortality 1990 to 2016: systematic analysis for the Global Burden of Disease Study 2016[J]. BMJ, 2019, 364, l94.
doi: 10.1136/bmj.l94 |
2 |
Franklin JC , Ribeiro JD , Fox KR , et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research[J]. Psychol Bull, 2017, 143 (2): 187- 232.
doi: 10.1037/bul0000084 |
3 |
Falcone T , Dagar A , Castilla-Puentes RC , et al. Digital conversations about suicide among teenagers and adults with epilepsy: a big-data, machine learning analysis[J]. Epilepsia, 2020, 61 (5): 951- 958.
doi: 10.1111/epi.16507 |
4 |
Carson NJ , Mullin B , Sanchez MJ , et al. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records[J]. PLoS One, 2019, 14 (2): e0211116.
doi: 10.1371/journal.pone.0211116 |
5 |
Pestian JP , Grupp-Phelan J , Cohen KB , et al. A controlled trial using natural language processing to examine the language of suicidal adolescents in the Emergency Department[J]. Suicide Life Threat Behav, 2016, 46 (2): 154- 159.
doi: 10.1111/sltb.12180 |
6 |
Miché M , Studerus E , Meyer AH , et al. Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning[J]. J Affect Disord, 2020, 265, 570- 578.
doi: 10.1016/j.jad.2019.11.093 |
7 |
Hill RM , Oosterhoff B , Do C . Using machine learning to identify suicide risk: a classification tree approach to prospectively identify adolescent suicide attempters[J]. Arch Suicide Res, 2020, 24 (2): 218- 235.
doi: 10.1080/13811118.2019.1615018 |
8 |
Walsh CG , Ribeiro JD , Franklin JC . Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning[J]. J Child Psychol Psychiatry, 2018, 59 (12): 1261- 1270.
doi: 10.1111/jcpp.12916 |
9 |
Jung JS , Park SJ , Kim EY , et al. Prediction models for high risk of suicide in Korean adolescents using machine learning techniques[J]. PLoS One, 2019, 14 (6): e0217639.
doi: 10.1371/journal.pone.0217639 |
10 |
Bae SM , Lee SA , Lee SH . Prediction by data mining, of suicide attempts in Korean adolescents: a national study[J]. Neuropsychiatr Dis Treat, 2015, 11, 2367- 2375.
doi: 10.2147/NDT.S91111 |
11 |
Burke TA , Jacobucci R , Ammerman BA , et al. Using machine learning to classify suicide attempt history among youth in medical care settings[J]. J Affect Disord, 2020, 268, 206- 214.
doi: 10.1016/j.jad.2020.02.048 |
12 |
Kessler RC , Warner CH , Ivany C , et al. Predicting suicides after psychiatric hospitalization in US army soldiers: the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS)[J]. JAMA Psychiatry, 2015, 72 (1): 49- 57.
doi: 10.1001/jamapsychiatry.2014.1754 |
13 |
Gong J , Simon GE , Liu S . Machine learning discovery of longitudinal patterns of depression and suicidal ideation[J]. PLoS One, 2019, 14 (9): e0222665.
doi: 10.1371/journal.pone.0222665 |
14 |
Senior M , Burghart M , Yu R , et al. Identifying predictors of suicide in severe mental illness: a feasibility study of a clinical prediction rule (Oxford Mental Illness and Suicide Tool or OxMIS)[J]. Front Psychiatry, 2020, 11, 268.
doi: 10.3389/fpsyt.2020.00268 |
15 |
Oh J , Yun K , Hwang JH , et al. Classification of suicide attempts through a machine learning algorithm based on multiple systemic psychiatric scales[J]. Frontiers in Psychiatry, 2017, 8, 192.
doi: 10.3389/fpsyt.2017.00192 |
16 |
Berrouiguet S , Barrigón ML , Castroman JL , et al. Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol[J]. BMC Psychiatry, 2019, 19 (1): 277.
doi: 10.1186/s12888-019-2260-y |
17 | Barros J , Morales S , Echavarri O , et al. Suicide detection in Chile: proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders[J]. Braz J Psychiatry, 2017, 39 (1): 1- 11. |
18 |
Hettige NC , Nguyen TB , Yuan C , et al. Classification of suicide attempters in schizophrenia using sociocultural and clinical features: a machine learning approach[J]. Gen Hosp Psychiatry, 2017, 47, 20- 28.
doi: 10.1016/j.genhosppsych.2017.03.001 |
19 | Zalar B , Kores B , Zalar I , et al. Suicide and suicide attempt descriptors by multimethod approach[J]. Psychiatr Danub, 2018, 30 (3): 317- 322. |
20 |
Kessler RC , Hwang I , Hoffmire CA , et al. Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration[J]. Int J Methods Psychiatr Res, 2017, 26 (3): e1575.
doi: 10.1002/mpr.1575 |
21 |
Gradus JL , Rosellini AJ , Horváth-Puhó E , et al. Prediction of sex-specific suicide risk using machine learning and single-payer health care registry data from Denmark[J]. JAMA Psychiatry, 2020, 77 (1): 25- 34.
doi: 10.1001/jamapsychiatry.2019.2905 |
22 |
Sanderson M , Bulloch AGM , Wang J , et al. Predicting death by suicide using administrative health care system data: can feedforward neural network models improve upon logistic regression models?[J]. J Affect Disord, 2019, 257, 741- 747.
doi: 10.1016/j.jad.2019.07.063 |
23 |
Ludwig B , König D , Kapusta ND , et al. Clustering suicides: a data-driven, exploratory machine learning approach[J]. Eur Psychiatry, 2019, 62, 15- 19.
doi: 10.1016/j.eurpsy.2019.08.009 |
24 |
Liu D , Yu M , Duncan J , et al. Discovering the unclassified suicide cases among undetermined drug overdose deaths using machine learning techniques[J]. Suicide Life Threat Behav, 2020, 50 (2): 333- 344.
doi: 10.1111/sltb.12591 |
25 |
Choi SB , Lee W , Yoon JH , et al. Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea[J]. J Affect Disord, 2018, 231, 8- 14.
doi: 10.1016/j.jad.2018.01.019 |
26 |
Walsh CG , Ribeiro JD , Franklin JC . Predicting risk of suicide attempts over time through machine learning[J]. Clin Psychol Science, 2017, 5 (3): 457- 469.
doi: 10.1177/2167702617691560 |
27 |
Metzger MH , Tvardik N , Gicquel Q , et al. Use of emergency department electronic medical records for automated epidemiological surveillance of suicide attempts: a French pilot study[J]. Int J Methods Psychiatr Res, 2017, 26 (2): e1522.
doi: 10.1002/mpr.1522 |
28 |
Zheng L , Wang O , Hao S , et al. Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records[J]. Transl Psychiatry, 2020, 10 (1): 72.
doi: 10.1038/s41398-020-0684-2 |
29 |
Bhak Y , Jeong HO , Cho YS , et al. Depression and suicide risk prediction models using blood-derived multi-omics data[J]. Transl Psychiatry, 2019, 9 (1): 262.
doi: 10.1038/s41398-019-0595-2 |
30 |
Pestian JP , Sorter M , Connolly B , et al. A machine learning approach to identifying the thought markers of suicidal subjects: a Prospective Multicenter Trial[J]. Suicide Life Threat Behav, 2017, 47 (1): 112- 121.
doi: 10.1111/sltb.12312 |
31 |
Haroz EE , Walsh CG , Goklish N , et al. Reaching those at highest risk for suicide: development of a model using machine learning methods for use with Native American Communities[J]. Suicide Life Threat Behav, 2020, 50 (2): 422- 436.
doi: 10.1111/sltb.12598 |
32 |
Just MA , Pan L , Cherkassky VL , et al. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth[J]. Nat Hum Behav, 2017, 1, 911- 919.
doi: 10.1038/s41562-017-0234-y |
33 |
Weng JC , Lin TY , Tsai YH , et al. An autoencoder and machine learning model to predict suicidal ideation with Brain structural imaging[J]. J Clin Med, 2020, 9 (3): 658.
doi: 10.3390/jcm9030658 |
34 |
Ryu S , Lee H , Lee DK , et al. Detection of suicide attempters among suicide ideators using machine learning[J]. Psychiatry Investig, 2019, 16, 588- 593.
doi: 10.30773/pi.2019.06.19 |
35 |
Kessler RC , Chalker SA , Luedtke AR , et al. A preliminary precision treatment rule for remission of suicide ideation[J]. Suicide Life Threat Behav, 2020, 50 (2): 558- 572.
doi: 10.1111/sltb.12609 |
36 | Vioules MJ , Moulahi B , Aze J , et al. Detection of suicide-related posts in Twitter data streams[J]. IBM J Res Devel, 2018, 62 (1): 1- 12. |
37 |
Braithwaite SR , Giraud-Carrier C , West J , et al. Validating machine learning algorithms for twitter data against established measures of suicidality[J]. JMIR Mental Health, 2016, 3 (2): e21.
doi: 10.2196/mental.4822 |
38 |
Barak-Corren Y , Castro VM , Nock MK , et al. Validation of an electronic health record-based suicide risk prediction modeling approach across multiple health care systems[J]. JAMA Netw Open, 2020, 3 (3): e201262.
doi: 10.1001/jamanetworkopen.2020.1262 |
39 |
Sanderson M , Bulloch AG , Wang JL , et al. Predicting death by suicide using administrative health care system data: can recurrent neural network, one-dimensional convolutional neural network, and gradient boosted trees models improve prediction performance?[J]. J Affect Disord, 2020, 264, 107- 114.
doi: 10.1016/j.jad.2019.12.024 |
40 |
Fernandes AC , Dutta R , Velupillai S , et al. Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing[J]. Sci Rep, 2018, 8 (1): 7426.
doi: 10.1038/s41598-018-25773-2 |
[1] | ZHAO Sibo, PENG Li, LING Hongxiang. Relationship between medical insurance participation and risk of suicide among rural elderly [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 113-118. |
[2] | SHEN Yufei, ZHAO Mei, HU Mi. Help-seeking willingness, help-seeking behaviors and influencing factors in middle school students with suicidal ideation [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 99-106. |
[3] | XU Xiaoming, KONG Yiting, LIU Chuan, MING Ying, KUANG Li. Research progress of suicide warning systems for adolescents and young adults [J]. Journal of Shandong University (Health Sciences), 2022, 60(2): 69-74. |
[4] | Yonggang SU,Rui WANG,Tongwei YANG. Influencing factors and preventive measures of elderly suicide from the perspective of Healthy China Initiative [J]. Journal of Shandong University (Health Sciences), 2022, 60(2): 8-13. |
[5] | Cunxian JIA,Zhenzhen LIU. Pay attention to sleep problems and prevent self-harm among adolescents [J]. Journal of Shandong University (Health Sciences), 2022, 60(2): 1-7. |
[6] | YAO Zhiying, WEI Yanxin, WANG Xinting, ZHANG Jie, JIA Cunxian. Relationship between exposure to suicidal behaviors and suicide attempt of rural residents [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 86-92. |
[7] | WANG Chao, ZHANG Yilin, ZOU Guangshun, LYU Juncheng. Suicidal ideation and influencing factors in 686 medical students [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 78-85. |
[8] | BI Fengying, YAN Dongqin, CHEN Xi, LUO Dan. Theoretical framework of suicide risk factors among people living with HIV/AIDS: a qualitative study based on grounded theory [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 109-117. |
[9] | JIANG Zhen, SUN Jing, ZOU Wen, WANG Changchang, GAO Qi. A comparison study of suicidal behavior predictive models of bipolar disorder patients based on two machine learning algorithms [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 101-108. |
[10] | TIAN Yaotian, WANG Bao, LI Yeqin, WANG Teng, TIAN Liwen, HAN Bo, WANG Cuiyan. Machine learning models based on interpretive CMR parameters can predict the prognosis of pediatric myocarditis [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 43-49. |
[11] | WEI Yanxin, WANG Xinting, LIU Baopeng, LI Yuanyuan, ZHANG Jiyu, JIA Cunxian. A cluster analysis of suicide attempters in rural Shandong Province according to their suicidal behaviors [J]. Journal of Shandong University (Health Sciences), 2021, 59(11): 108-113. |
[12] | ZHANG Yilin, WANG Chao, ZOU Guangshun, LYU Juncheng. Relationship between sense of meaning in life and suicidal ideation in medical students [J]. Journal of Shandong University (Health Sciences), 2021, 59(11): 93-99. |
[13] | CHEN Qingyi, ZHANG Xuan, WANG Juan, SUN Jiwei, CAO Danfeng, CAO fenglin. Risk factors and cumulative effects of suicidal ideation in pregnant women [J]. Journal of Shandong University (Health Sciences), 2021, 59(1): 91-94. |
[14] | Qiang WU,Zekun HE,Ju LIU,Xiaomeng CUI,Shuang SUN,Wei SHI. A research on multi-modal MRI analysis based on machine learning for brain glioma [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 81-87. |
[15] | Wei ZHANG,Wenhao TAN,Yibin LI. Locmotion control of quadruped robot based on deep reinforcement learning: review and prospect [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 61-66. |
|