Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (9): 77-83.doi: 10.6040/j.issn.1671-7554.0.2025.0019

• Review • Previous Articles    

Research progress on the mechanism of berberines anti-atherosclerosis effects based on the synergistic effect of lipid deposition inhibition and metabolic clearance

LI Xiping1, QIU Mei2, HUANG Ruifeng2, LIN Huihui2, LIU Sisi2, LUO Hongying2, WANG Yuyue2, WANG Min2, YANG Xiaotong3   

  1. 1. Department of Emergency, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China;
    2. School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China;
    3. Hospital Office, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
  • Published:2025-09-08

Abstract: Atherosclerosis(AS), the primary pathological basis of cardiovascular diseases, poses a growing global public health challenge. Current therapies face limitations in synergistically addressing lipid metabolism disorders and inflammatory dysregulation, prompting exploration of multi-target natural agents. Berberine, a natural compound, combats AS through dual mechanisms: suppressing cholesterol biosynthesis, enhancing reverse cholesterol transport, and inhibiting macrophage foam cell formation to reduce arterial lipid deposition; while improving lipoprotein homeostasis and activating fatty acid β-oxidation to diminish visceral fat accumulation. These actions collectively prevent AS progression, ameliorate metabolic syndrome, and alleviate hepatic lipotoxicity. This review elucidates berberines molecular mechanisms in rebalancing lipid-inflammatory networks during AS pathogenesis and evaluates its clinical potential, offering novel strategies to overcome single-target drug limitations.

Key words: Berberine, Atherosclerosis, Lipid metabolism, Cholesterol, Macrophages

CLC Number: 

  • R543.1
[1] 吴虹, 张正铎, 唐延金, 等. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报(医学版), 2022, 60(8): 6-13. WU Hong, ZHANG Zhengduo, TANG Yanjin, et al. Potential intervention effects of 5-methyltetrahydrofolate on atherosclerosis in rats[J]. Journal of Shandong University(Health Sciences), 2022, 60(8): 6-13.
[2] Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis[J]. Nature, 2011, 473(7347): 317-325.
[3] Liu HX, Zhang YC, Zhao YY, et al. Research progress and clinical translation potential of coronary atherosclerosis diagnostic markers from a genomic perspective[J]. Genes(Basel), 2025, 16(1): 98. doi: 10.3390/genes16010098
[4] Xia Y, Liu H, Zhu R, et al. Analysis of non-cardiogenic young minor ischemic stroke patients risk factors in Chinese Han population[J]. Med Sci Monit, 2025, 31: e946146. doi: 10.12659/MSM.946146
[5] Masoumi-Ardakani Y, Eghbalian M, Fallah H, et al. Exploring serum miR-33b as a novel diagnostic marker for hypercholesterolemia and obesity: insights from a pilot case-control study[J]. BMC Endocr Disord, 2025, 25(1): 27. doi: 10.1186/s12902-025-01849-9
[6] Nehaoua A, Gasmi A, Benahmed AG, et al. Lipid biochemistry and its role in human diseases[J]. Curr Med Chem, 2025. doi: 10.2174/0109298673351452241220071215
[7] Gong ZH, Yang HX, Gao L, et al. Mechanisms of wogonoside in the treatment of atherosclerosis based on network pharmacology, molecular docking, and experimental validation[J]. BMC Complement Med Ther, 2025, 25(1): 28. doi: 10.1186/s12906-025-04760-x
[8] Shi Z, Huang J, Chen C, et al. Lipid nanoparticles encapsulating curcumin for imaging and stabilization of vulnerable atherosclerotic plaques via phagocytic “eat-me” signals[J]. J Control Release, 2024, 373: 265-276. doi: 10.1016/j.jconrel.2024.07.027
[9] Yang AN, Zhang HW, Zhang HP, et al. Pitavastatin and resveratrol bio-nano complexes against hyperhomocysteinemia-induced atherosclerosis via blocking ferroptosis-related lipid deposition[J]. J Control Release, 2025, 381: 113598. doi: 10.1016/j.jconrel.2025.113598
[10] Zhang LH, Wang HX, Wang ZS, et al. Resveratrol promotes cholesterol efflux from dendritic cells and controls costimulation and T-cell activation in high-fat and lipopolysaccharide-driven atherosclerotic mice[J]. Front Cardiovasc Med, 2024, 11: 1450898. doi: 10.3389/fcvm.2024.1450898
[11] Du JD, Zhu Y, Yang XH, et al. Berberine attenuates obesity-induced insulin resistance by inhibiting miR-27a secretion[J]. Diabet Med, 2024, 41(7): e15319. doi: 10.1111/dme.15319
[12] Ming Y, He XY, Zhao ZX, et al. Nanocarrier-assisted delivery of berberine promotes diabetic alveolar bone regeneration by scavenging ROS and improving mitochondrial dysfunction[J]. Int J Nanomedicine, 2024, 19: 10263-10282. doi: 10.2147/IJN.S475320
[13] Wei GL, Huang N, Li MY, et al. Tetrahydroberberine alleviates high-fat diet-induced hyperlipidemia in mice via augmenting lipoprotein assembly-induced clearance of low-density lipoprotein and intermediate-density lipoprotein[J]. Eur J Pharmacol, 2024, 968: 176433. doi: 10.1016/j.ejphar.2024.176433
[14] Wang KX, Li ZX, Zhang WC, et al. The study on synthesis and vitro hypolipidemic activity of novel berberine derivatives nitric oxide donors[J]. Fitoterapia, 2024, 176: 105964. doi: 10.1016/j.fitote.2024.105964
[15] Ding LN, Xia JJ, Wang H, et al. Berberine improves glucose and lipid metabolism in obese mice through the reduction of IRE1/GSK-3β axis-mediated inflammation[J]. Endocr Metab Immune Disord Drug Targets, 2025. doi: 10.2174/0118715303319434241113161606
[16] Kong Y, Yi YJ, Liu XQ, et al. Discovery and structural optimization of 9-O-phenylsulfonyl-berberines as new lipid-lowering agents[J]. Bioorg Chem, 2022, 121: 105665. doi: 10.1016/j.bioorg.2022.105665
[17] Zhao Y, Yang YY, Yang BL, et al. Efficacy and safety of berberine for dyslipidemia: study protocol for a randomized double-blind placebo-controlled trial[J]. Trials, 2021, 22(1): 85. doi: 10.1186/s13063-021-05028-8
[18] Wu CM, Zhao Y, Zhang YY, et al. Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine(BBR)and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients[J]. J Adv Res, 2021, 37: 197-208. doi: 10.1016/j.jare.2021.07.011
[19] Hu WH, Feng H, Liu Y, et al. Recent advances in immunotherapy targeting CETP proteins for atherosclerosis prevention[J]. Hum Vaccin Immunother, 2025, 21(1): 2462466. doi: 10.1080/21645515.2025.2462466
[20] Winnie Ho TW, Wang C, Lee WL. LDL transcytosis passes through the trans-Golgi network and requires Rab10[J]. J Lipid Res, 2025:100893. doi: 10.1016/j.jlr.2025.100893
[21] Borén J, Taskinen MR, Packard CJ. Biosynthesis and metabolism of ApoB-containing lipoproteins[J]. Annu Rev Nutr, 2024, 44(1): 179-204.
[22] Matsuo M, Takaoka S, Nakayama K, et al. Fatty acids from cheese stimulate cholesterol efflux by ATP-binding cassette transporters[J]. Biosci Biotechnol Biochem, 2025, 89(4): 573-585.
[23] Liao WQ, Li Y, Zhao HY, et al. The Lian-Dou-Qing-Mai Formula activates the PPARγ-LXRα-ABCA1/ABCG1 pathway by regulating IL-10, leading to the promotion of cholesterol efflux and a reduction in atherosclerotic plaques[J]. Histol Histopathol, 2025, 40(4): 585-596.
[24] Zhang ST, Du JJ, Wang P, et al. Association between estimated small dense low-density lipoprotein-cholesterol(sdLDL-C)and atherosclerotic cardiovascular disease risk[J]. Arq Bras Cardiol, 2025, 122(1): e20240265. doi: 10.36660/abc.20240265
[25] Zhang SX, Sun L, Xu XY, et al. Efficacy and safety of inclisiran versus PCSK9 inhibitor versus statin plus ezetimibe therapy in hyperlipidemia: a systematic review and network meta-analysis[J]. BMC Cardiovasc Disord, 2024, 24(1): 629. doi: 10.1186/s12872-024-04321-z
[26] Ginsberg HN, Packard CJ, Chapman MJ, et al. Trigly-ceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European atherosclerosis society[J]. Eur Heart J, 2021, 42(47): 4791-4806.
[27] Khoury E, Lauzière A, Raal FJ, et al. Atherosclerotic plaque regression in homozygous familial hypercholestero-laemia: a case report of a long-term lipid-lowering the-rapy involving LDL-receptor-independent mechanisms[J]. Eur Heart J Case Rep, 2023, 7(1): ytad029. doi: 10.1093/ehjcr/ytad029
[28] Dai W, Zhang H, Lund H, et al. Intracellular tPA-PAI-1 interaction determines VLDL assembly in hepatocytes[J]. Science, 2023, 381(6661): eadh5207. doi: 10.1126/science.adh5207
[29] Munkhsaikhan U, Ait-Aissa K, Sahyoun AM, et al. Lomitapide: navigating cardiovascular challenges with innovative therapies[J]. Mol Biol Rep, 2024, 51(1): 1082. doi: 10.1007/s11033-024-10003-y
[30] Goldstein JL, Brown MS. The LDL receptor and the regulation of cellular cholesterol metabolism[J]. J Cell Sci Suppl, 1985, 3: 131-137. doi: 10.1242/jcs.1985.supplement_3.13
[31] Rosenson RS, Jr HBB, Davidson WS, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport[J]. Circulation, 2012, 125(15): 1905-1919.
[32] Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J]. J Clin Invest, 2000, 105(8): 1049-1056.
[33] Libby P, Hansson GK. Inflammation and immunity in diseases of the arterial tree: players and layers[J]. Circ Res, 2015, 116(2): 307-311.
[34] Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders[J]. Nature, 2017, 542(7640): 177-185.
[35] Zhou X, Ren FY, Wei H, et al. Combination of ber-berine and evodiamine inhibits intestinal cholesterol absorption in high fat diet induced hyperlipidemic rats[J]. Lipids Health Dis, 2017, 16(1): 239. doi: 10.1186/s12944-017-0628-x
[36] Cai YJ, Yang QN, Yu YQ, et al. Efficacy and underl-ying mechanisms of berberine against lipid metabolic diseases: a review[J]. Front Pharmacol, 2023, 14: 1283784. doi: 10.3389/fphar.2023.1283784
[37] Cao SJ, Zhou Y, Xu PX, et al. Berberine metabolites exhibit triglyceride-lowering effects via activation of AMP-activated protein kinase in Hep G2 cells[J]. J Ethnopharmacol, 2013, 149(2): 576-582.
[38] Alruhaimi RS, Siddiq Abduh M, Ahmeda AF, et al. Berberine attenuates inflammation and oxidative stress and modulates lymphocyte E-NTPDase in acute hyperlipidemia[J]. Drug Dev Res, 2024, 85(2): e22166. doi: 10.1002/ddr.22166
[39] Chen C, Liu XC, Deng B. Protective effects of berberine on nonalcoholic fatty liver disease in db/db mice via AMPK/SIRT1 pathway activation[J]. Curr Med Sci, 2024, 44(5): 902-911.
[40] Feng J, Xu R, Dou ZJ, et al. Tetrahydroberberrubine improves hyperlipidemia by activating the AMPK/SREBP2/PCSK9/LDL receptor signaling pathway[J]. Eur J Pharmacol, 2025, 989: 177228. doi: 10.1016/j.ejphar.2024.177228
[41] Cicero AFG, Fogacci F, Stoian AP, et al. Nutraceuticals in the management of dyslipidemia: which, when, and for whom? Could nutraceuticals help low-risk individuals with non-optimal lipid levels?[J]. Curr Atheroscler Rep, 2021, 23(10): 57. doi: 10.1007/s11883-021-00955-y
[42] Tian Y, Cai JW, Gui W, et al. Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation[J]. Drug Metab Dispos, 2019, 47(2): 86-93.
[43] Wang C, Yang YT, Chen JY, et al. Berberine protects against high-energy and low-protein diet-induced hepatic steatosis: modulation of gut microbiota and bile acid metabolism in laying hens[J]. Int J Mol Sci, 2023, 24(24): 17304. doi: 10.3390/ijms242417304
[44] Yang XJ, Liu F, Feng N, et al. Berberine attenuates cholesterol accumulation in macrophage foam cells by suppressing AP-1 activity and activation of the Nrf2/HO-1 pathway[J]. J Cardiovasc Pharmacol, 2020, 75(1): 45-53.
[45] Song T, Chen WD. Berberine inhibited carotid atherosclerosis through PI3K/AKTmTOR signaling pathway[J]. Bioengineered, 2021, 12(1): 8135-8146.
[46] Wang TT, Yu LL, Zheng JM, et al. Berberine inhibits ferroptosis and stabilizes atherosclerotic plaque through NRF2/SLC7A11/GPX4 pathway[J]. Chin J Integr Med, 2024, 30(10): 906-916.
[47] Ma SR, Tong Q, Lin Y, et al. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota[J]. Signal Transduct Target Ther, 2022, 7(1): 207. doi: 10.1038/s41392-022-01027-6
[48] Ma CY, Shi XY, Wu YR, et al. Berberine attenuates atherosclerotic lesions and hepatic steatosis in ApoE-/- mice by down-regulating PCSK9 via ERK1/2 pathway[J]. Ann Transl Med, 2021, 9(20): 1517. doi: 10.21037/atm-20-8106
[49] Fatahian A, Haftcheshmeh SM, Azhdari S, et al. Promising anti-atherosclerotic effect of berberine: evidence from in vitro, in vivo, and clinical studies[J]. Rev Physiol Biochem Pharmacol, 2020, 178: 83-110. doi: 10.1007/112_2020_42
[50] Yang LL, Zhu WY, Zhang XB, et al. Efficacy and safety of berberine for several cardiovascular diseases: a systematic review and meta-analysis of randomized controlled trials[J]. Phytomedicine, 2023, 112: 154716. doi: 10.1016/j.phymed.2023.154716
[51] Sharma S, Sharma D, Dhobi M, et al. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α[J]. Mol Cell Biochem, 2024, 479(3): 707-732.
[52] Wu M, Yang SJ, Wang SZ, et al. Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- mice[J]. Front Pharmacol, 2020, 11: 223. doi: 10.3389/fphar.2020.00223
[53] Wu SN, Zou MH. AMPK, mitochondrial function, and cardiovascular disease[J]. Int J Mol Sci, 2020, 21(14): 4987. doi: 10.3390/ijms21144987
[54] Yu MY, Alimujiang M, Hu LL, et al. Berberine alleviates lipid metabolism disorders via inhibition of mitochondrial complex I in gut and liver[J]. Int J Biol Sci, 2021, 17(7): 1693-1707.
[55] Ilyas Z, Perna S, Al-Thawadi S, et al. The effect of berberine on weight loss in order to prevent obesity: a systematic review[J]. Biomed Pharmacother, 2020, 127: 110137. doi: 10.1016/j.biopha.2020.110137
[56] Cicero AFG, Fogacci F, Tocci G, et al. Three arms, double-blind, non-inferiority, randomized clinical study testing the lipid-lowering effect of a novel dietary supplement containing red yeast rice and artichoke extracts compared to Armolipid Plus® and placebo[J]. Arch Med Sci, 2023, 19(5): 1169-1179.
[1] DU Aijia, ZHANG Man, CHEN He, WANG Lixin, SHANG Yingshu. miR-1270-targeted regulation of angiopoietin-like protein 7 inhibits macrophage inflammation and lipid accumulation [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 1-9.
[2] WU Tong, YANG Jingyu, LIN Dang, XU Wanru, ZENG Yujun. Genetic association of lipids and lipid-lowering drugs with chronic obstructive pulmonary disease based on Mendelian randomization [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 54-63.
[3] ZHAO Zhibo, MAN Zhentao, LI Wei. Role of cholesterol metabolism in osteoarthritis: a review of research progresses [J]. Journal of Shandong University (Health Sciences), 2024, 62(2): 1-9.
[4] XU Tianqi, CHANG Na, ZHANG Shuai, LI Sha, JIAO Bingxuan, YU Xinxin, WANG Ximing. Identification of carotid high-risk plaques by non-alcoholic fatty liver disease based on CTA [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 36-43.
[5] WU Hong, ZHANG Zhengduo, TANG Yanjin, QI Shaojun, GAO Xibao. Potential intervention effects of 5-methyltetrahydrofolate on atherosclerosis in rats [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 6-13.
[6] ZHAO Meiru, ZHU Di, LIU Lin, GUAN Qingbo, ZHANG Xu. Association of 4 simple insulin resistance indicators with the risk of hyperuricemia in 698 patients with type 2 diabetes mellitus [J]. Journal of Shandong University (Health Sciences), 2022, 60(12): 44-51.
[7] XIE Jiaying, QI Jia, SONG Ming, LI Yulin, WANG Di, JIA Xu, ZHANG Wei, ZHONG Ming, SHANG Yuanyuan. Association between serum β-sheet level and coronary heart disease [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 21-26.
[8] ZHANG Ludan, DING Xiaoling, CUI Shuyue, CHENG Chen, WEI Fulan, DING Gang. Periodontal ligament stem cells regulate the functions of macrophages in vitro [J]. Journal of Shandong University (Health Sciences), 2021, 59(3): 35-40.
[9] JIANG Yong, SONG Jiangang, ZHU Daxia, LIU Lijian. Effects of naringenin on acute lung injury induced by sepsis via regulating the activation of NLRP3 inflammasome in macrophages [J]. Journal of Shandong University (Health Sciences), 2021, 59(1): 14-21.
[10] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24-31.
[11] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67-71.
[12] LI Yan, SUN Fengjiao, ZHANG Tianran, WANG Yuxin, ZHANG Zhengduo, GAO Xibao. Effects of high-sugar, high-fat diet and different concentrations of selenium on lipid metabolism and oxidative stress in rats [J]. Journal of Shandong University (Health Sciences), 2020, 58(5): 98-106.
[13] ZHANG Xiaolu, WANG Lili, CHEN Kaiming, LOU Xianzhi, ZHANG Man. Mechanism of histone deacetylase SIRT1 inhibiting macrophages apoptosis via TLR4 signaling pathway [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 8-14.
[14] LI Changda, SHI Yongjun, LIN Yanliang. Effects of 27-hydroxycholesterol and cholesterol on the proliferation of esophageal squamous cell carcinoma in nude mice and human esophageal carcinoma cells(ECA109) [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 45-52.
[15] LI Mingzhuo, SUN Xiubin, WANG Chunxia, YANG Yang, LIU Xinhui, LIU Yanxun, XUE Fuzhong, YUAN Zhongshang. Association between longitudinal changes of HDL-C and coronary heart disease in a population with normal serum lipids: a retrospective cohort study [J]. Journal of Shandong University (Health Sciences), 2019, 57(8): 110-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!