Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (2): 1-9.doi: 10.6040/j.issn.1671-7554.0.2024.0045

• Expert Overview •    

Role of cholesterol metabolism in osteoarthritis: a review of research progresses

ZHAO Zhibo1,2, MAN Zhentao2, LI Wei1,2   

  1. 1. Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2024-03-29

Abstract: Osteoarthritis(OA)is a degenerative disease associated with aging and has long been linked to obesity. Some studies suggest that OA might be a metabolic disease, impacting not only weight-bearing joints but also non-weight-bearing joints. Emerging evidence indicates abnormal cholesterol metabolism in osteoarthritis, with pathways leading to the production of pro-inflammatory substances crucial to OA development. Drugs capable of modulating abnormal cholesterol metabolism hold considerable therapeutic promise for OA. This article aims to summarize the role and comprehensive molecular mechanisms of cholesterol metabolism in osteoarthritis and proposes that a multi-faceted regulation of cholesterol metabolism could be a promising strategy for the clinical treatment of osteoarthritis.

Key words: Osteoarthritis, Metabolic syndrome(MetS), Cholesterol metabolism disorder, Oxidized low density lipoprotein, Cholesterol metabolism

CLC Number: 

  • R687.4+1
[1] Luo J, Yang HY, Song BL. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245.
[2] Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis[J]. Prog Lipid Res, 2013, 52(1): 175-191.
[3] Ridker PM, Bhatt DL, Pradhan AD, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials[J]. Lancet, 2023, 401(10384): 1293-1301.
[4] Zhang X, Coker OO, Chu ES, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021, 70(4): 761-774.
[5] 唐博, 邵静, 崔静, 等. 2型糖尿病发病与高密度脂蛋白关系的机制研究[J]. 山东大学学报(医学版), 2020, 58(3): 99-106. TANG Bo, SHAO Jing, CUI Jing, et al. A mechanism study on the association of type 2 diabetes and high-density lipoprotein[J]. Journal of Shandong University(Health Sciences), 2020, 58(3): 99-106.
[6] Campbell BCV, De Silva DA, MacLeod MR, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 70.
[7] Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2016, 2: 16072. doi:10.1038/nrdp.2016.72.
[8] Zheng LL, Zhang ZJ, Sheng PY, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis[J].Ageing Res Rev,2021,66:101249. doi:10.1016/j.arr.2020.101249.
[9] Song YF, Liu JJ, Zhao K, et al. Cholesterol-induced toxicity: an integrated view of the role of cholesterol in multiple diseases[J]. Cell Metab, 2021, 33(10): 1911-1925.
[10] Hoeven TA, Kavousi M, Clockaerts S, et al. Association of atherosclerosis with presence and progression of osteoarthritis: the Rotterdam Study[J]. Ann Rheum Dis, 2013, 72(5): 646-651.
[11] Hindy G, Åkesson KE, Melander O, et al. Cardiometabolic polygenic risk scores and osteoarthritis outcomes: a Mendelian randomization study using data from the malmö diet and cancer study and the UK biobank[J]. Arthritis Rheumatol, 2019, 71(6): 925-934.
[12] Tsezou A, Iliopoulos D, Malizos KN, et al. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes[J]. J Orthop Res, 2010, 28(8): 1033-1039.
[13] Goicoechea L, Conde de la Rosa L, Torres S, et al. Mitochondrial cholesterol: metabolism and impact on redox biology and disease[J]. Redox Biol, 2023, 61: 102643. doi:10.1016/j.redox.2023.102643.
[14] Amorim JA, Coppotelli G, Rolo AP, et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases[J]. Nat Rev Endocrinol, 2022, 18(4): 243-258.
[15] Su LJ, Zhang JH, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414.
[16] Farnaghi S, Prasadam I, Cai G, et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis[J]. FASEB J, 2017, 31(1): 356-367.
[17] King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer[J]. Trends Immunol, 2022, 43(1): 78-92.
[18] 李艳, 孙凤娇, 张天然, 等. 高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响[J]. 山东大学学报(医学版), 2020, 58(5): 98-106. LI Yan, SUN Fengjiao, ZHANG Tianran, et al. Effects of high-sugar, high-fat diet and different concentrations of selenium on lipid metabolism and oxidative stress in rats[J]. Journal of Shandong University(Health Sciences), 2020, 58(5): 98-106.
[19] Wang Z, Ni SF, Zhang HF, et al. Silencing SGK1 alleviates osteoarthritis through epigenetic regulation of CREB1 and ABCA1 expression[J]. Life Sci, 2021, 268: 118733. doi:10.1016/j.lfs.2020.118733.
[20] van der Vorst EPC, Theodorou K, Wu YZ, et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling[J]. Cell Metab, 2017, 25(1): 197-207.
[21] Castañer O, Pintó X, Subirana I, et al. Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease[J]. J Am Coll Cardiol, 2020, 76(23): 2712-2724.
[22] Dunk MM, Li J, Liu SM, et al. Associations of dietary cholesterol and fat, blood lipids, and risk for dementia in older women vary by APOE genotype[J]. Alzheimers Dement, 2023, 19(12): 5742-5754.
[23] Perna L, Mons U, Stocker H, et al. High cholesterol levels change the association of biomarkers of neurodegenerative diseases with dementia risk: findings from a population-based cohort[J]. Alzheimers Dement, 2023, 19(7): 2913-2922.
[24] Birch J, Gil J. Senescence and the SASP: many therapeutic avenues[J]. Genes Dev, 2020, 34(23): 1565-1576.
[25] Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57.
[26] Shin HR, Citron YR, Wang L, et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1[J]. Science, 2022, 377(6612): 1290-1298.
[27] Roh K, Noh J, Kim Y, et al. Lysosomal control of senescence and inflammation through cholesterol partitioning[J]. Nat Metab, 2023, 5(3): 398-413.
[28] 张杰, 杨求胜, 彭旭聪, 等. 胆固醇结晶相关的疾病以及消除结晶的治疗策略[J]. 中南药学, 2023, 21(7): 1883-1889. ZHANG Jie, YANG Qiusheng, PENG Xucong, et al. Cholesterol crystals related diseases and elimination strategies[J]. Central South Pharmacy, 2023, 21(7): 1883-1889.
[29] Shi CX, Kim T, Steiger S, et al. Crystal clots as therapeutic target in cholesterol crystal embolism[J]. Circ Res, 2020, 126(8): 37-52.
[30] Speer T, Dimmeler S, Schunk SJ, et al. Targeting innate immunity-driven inflammation in CKD and cardiovascular disease[J]. Nat Rev Nephrol, 2022, 18(12): 762-778.
[31] ORourke SA, Neto NGB, Devilly E, et al. Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages[J]. Atherosclerosis, 2022, 352: 35-45. doi:10.1016/j.atherosclerosis.2022.05.015.
[32] Guo CS, Chi ZX, Jiang DL, et al. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages[J]. Immunity, 2018, 49(5): 842-856.
[33] Niyonzima N, Bakke SS, Gregersen I, et al. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis[J]. EBioMedicine, 2020, 60: 102985. doi:10.1016/j.ebiom.2020.102985.
[34] Cao CX, Shi YY, Zhang X, et al. Cholesterol-induced LRP3 downregulation promotes cartilage degeneration in osteoarthritis by targeting Syndecan-4[J]. Nat Commun, 2022, 13(1): 7139.
[35] Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action[J]. Front Endocrinol, 2021, 12: 624112. doi:10.3389/fendo.2021.624112.
[36] Chen XR, Zhu XB, Dong J, et al. Reversal of epigenetic peroxisome proliferator-activated receptor-γ suppression by diacerein alleviates oxidative stress and osteoarthritis in mice[J]. Antioxid Redox Signal, 2022, 37(1): 40-53.
[37] Zhu XB, Chen F, Lu K, et al. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice[J]. Ann Rheum Dis, 2019, 78(10): 1420-1429.
[38] Kim J, Ryu G, Seo J, et al. 5-aminosalicylic acid suppresses osteoarthritis through the OSCAR-PPARγ axis[J]. Nat Commun, 2024, 15(1): 1024.
[39] Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions[J]. Nat Rev Cardiol, 2021, 18(12): 809-823.
[40] Vasheghani F, Zhang Y, Li YH, et al. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage[J]. Ann Rheum Dis, 2015, 74(3): 569-578.
[41] Park S, Baek IJ, Ryu JH, et al. PPARα-ACOT12 axis is responsible for maintaining cartilage homeostasis through modulating de novo lipogenesis[J]. Nat Commun, 2022, 13(1): 3.
[42] Bougarne N, Weyers B, Desmet SJ, et al. Molecular actions of PPARα in lipid metabolism and inflammation[J]. Endocr Rev, 2018, 39(5): 760-802.
[43] Nazih H, Bard JM. Cholesterol, oxysterols and LXRs in breast cancer pathophysiology[J]. Int J Mol Sci, 2020, 21(4): 1356.
[44] Duc D, Vigne S, Pot C. Oxysterols in autoimmunity[J]. Int J Mol Sci, 2019, 20(18): 4522.
[45] Yanagisawa R, He CQ, Asai A, et al. The impacts of cholesterol, oxysterols, and cholesterol lowering dietary compounds on the immune system[J]. Int J Mol Sci, 2022, 23(20): 12236.
[46] He YH, Liu TT. Oxidized low-density lipoprotein regulates macrophage polarization in atherosclerosis[J]. Int Immunopharmacol, 2023, 120: 110338. doi:10.1016/j.intimp.2023.110338
[47] Choi MC, Jo J, Park J, et al. NF-κB signaling pathways in osteoarthritic cartilage destruction[J]. Cells, 2019, 8(7): 734.
[48] Choi WS, Lee G, Song WH, et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis[J]. Nature, 2019, 566(7743): 254-258.
[49] Romani P, Brian I, Santinon G, et al. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP[J]. Nat Cell Biol, 2019, 21(3): 338-347.
[50] Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology-divergent pathophysiology[J]. Nat Rev Endocrinol, 2017, 13(12): 710-730.
[51] Kostopoulou F, Gkretsi V, Malizos KN, et al. Central role of SREBP-2 in the pathogenesis of osteoarthritis[J]. PLoS One, 2012, 7(5): 35753.
[52] Poli A, Marangoni F, Corsini A, et al. Phytosterols, cholesterol control, and cardiovascular disease[J]. Nutrients, 2021, 13(8): 2810.
[53] Ros E, Singh A, OKeefe JH. Nuts: natural pleiotropic nutraceuticals[J]. Nutrients, 2021, 13(9): 3269.
[54] Arden NK, Perry TA, Bannuru RR, et al. Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines[J]. Nat Rev Rheumatol, 2021, 17(1): 59-66.
[55] Safran-Norton CE, Sullivan JK, Irrgang JJ, et al. A consensus-based process identifying physical therapy and exercise treatments for patients with degenerative meniscal tears and knee OA: the TeMPO physical therapy interventions and home exercise program[J]. BMC Musculoskelet Disord, 2019, 20(1): 514.
[56] Nelligan RK, Hinman RS, Kasza J, et al. Effects of a self-directed web-based strengthening exercise and physical activity program supported by automated text messages for people with knee osteoarthritis: a randomized clinical trial[J]. JAMA Intern Med, 2021, 181(6): 776-785.
[57] Heidari B, Babaei M, Yosefghahri B. Prevention of osteoarthritis progression by statins, targeting metabolic and inflammatory aspects: a review[J]. Mediterr J Rheumatol, 2021, 32(3): 227-236.
[58] Sarmanova A, Doherty M, Kuo CF, et al. Statin use and risk of joint replacement due to osteoarthritis and rheumatoid arthritis: a propensity-score matched longitudinal cohort study[J]. Rheumatology, 2020, 59(10): 2898-2907.
[59] Hosseinzadeh A, Bahrampour Juybari K, Kamarul T, et al. Protective effects of atorvastatin on high glucose-induced oxidative stress and mitochondrial apoptotic signaling pathways in cultured chondrocytes[J]. J Physiol Biochem, 2019, 75(2): 153-162.
[60] Yu SM, Han Y, Kim SJ. Simvastatin abolishes nitric oxide- and reactive oxygen species-induced cyclooxygenase-2 expression by blocking the nuclear factor κB pathway in rabbit articular chondrocytes[J]. Cell Biol Int, 2020, 44(10): 2153-2162.
[61] Li LQ, Xu HY, Qu LH, et al. Water extracts of Polygonum Multiflorum Thunb. and its active component emodin relieves osteoarthritis by regulating cholesterol metabolism and suppressing chondrocyte inflammation[J]. Acupunct Herb Med, 2023, 3(2): 96-106.
[62] Li XC, Zhang L, Shi XQ, et al. MicroRNA-10a-3p improves cartilage degeneration by regulating CH25H-CYP7B1-RORα mediated cholesterol metabolism in knee osteoarthritis rats[J]. Front Pharmacol, 2021, 12: 690181. doi:10.3389/fphar.2021.690181.
[1] ZHAO Li-Xing, SONG Dai-Hui, WEI Kui-Jie, YIN Kai. An animal model of osteoarthritis on the temporomandibular joint [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 25-27.
[2] MA Liang, ZHANG Yuankai, JIANG Shuwei. Comparison of portable accelerometer-based navigation versus conventional instrumentation for total knee arthroplasty in 20 patients: the outcomes at early follow-up [J]. Journal of Shandong University (Health Sciences), 2022, 60(6): 75-81.
[3] ZHANG Weiwei, HUA Fang, LIANG Chaoshuai, CHU Miaomiao, SUN Jiayi, FRANK Zaucke, XIN Wei. Thyroid stimulating hormone promotes chondrocyte differentiation via anti-inflammatory protein CTRP3 [J]. Journal of Shandong University (Health Sciences), 2022, 60(10): 1-8.
[4] MIAO Zhuang, LIU Peilai, LU Qunshan, YAO Tianxiao, LI Songlin, LUO Desu. Early efficacy of double-column mobile bearing unicompartmental knee prosthesis in treating medial knee osteoarthritis [J]. Journal of Shandong University (Health Sciences), 2021, 59(5): 90-95.
[5] HUA Fang, ZHANG Weiwei, LYU Bo, XIN Wei. Bioinformatic analysis of genes and molecular pathways associated with osteoarthritis synovitis [J]. Journal of Shandong University (Health Sciences), 2021, 59(3): 10-17.
[6] LI Songlin, LIU Peilai, LU Qunshan, MA Heran. Application of high tibial osteotomy combined with autologous adipose-derived mesenchymal stem cells injection in the repair of knee cartilage [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 82-88.
[7] SUN Panpan, ZHAO Xu, LIN Xiaowen, FU Zhijian. Effects of medical ozone on the expression of PPARγ and autophagy in chondrocytes of osteoarthritis in rats [J]. Journal of Shandong University (Health Sciences), 2020, 58(6): 14-21.
[8] WANG Cong, SUN Shuzhen, ZHEN Junhui, LI Qian, XU Yihuai. Role of CXCL16 in mice with adriamycin induced nephropathy and the protective effects of simvastatin [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(9): 24-29.
[9] XIN Linwei, WANG Liming, LI Chaoxu, TANG Jicun, JIANG Mengyao, QU Quanli. Significance of type Ⅱ collagen biomarker C2C in the diagnosis of knee osteoarthritis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(6): 94-96.
[10] JU Shengtao, JIA Tanghong, NING Bin. Efficacy of periacetabular osteotomy for the treatment of developmental dysplasia of hip [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(10): 100-102.
[11] FAN Rong1,2, FU Zhi-jian1,2, XIE Jun-tian1, SHI Cheng-ying1. Effect of medical ozone on chondrocytes in the pathological process of osteoarthritis  [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(1): 27-.
[12] QI Meng1, WANG Ying2, CHEN Shao-ming3, WANG Yi-bing2, YE Ying2, WU Wen-hao2. MR comparative study of the width and height of the fossa intercondyloidea between osteoarthritis patients and healthy adults [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(06): 103-105.
[13] ZHANG Peng, SUN Shui, ZHANG Wei, GUAN Da-wei, LI Yan, CHEN Hui, QI Cheng-en, LI Hui-bo. Expression of oncostatin M in knee osteoarthritis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(5): 80-.
[14] SUN Rong-guo1, XU Long-jin2, HU Hong-yan1, CAI Xiao-jun1, WANG Meng1, Lv Yi-jie1 . Effect of polyinosinic acid on expression of lectin-like oxidized low-density lipoprotein receptor-1 and its  antiatherogenic role in atherosclerotic rabbits [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(7): 78-82.
[15] YANG Jinyong1, ZHAO Bin1, YU Taifei1, MA Yanhong1, HAO Wen2. Diagnostic value of MR T2-mapping in early knee osteoarthritis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(5): 139-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!