[1] |
Veronese N, Custodero C, Cella A, et al. Prevalence of multidimensional frailty and pre-frailty in older people in different settings: a systematic review and meta-analysis [J]. Ageing Res Rev, 2021, 72(1): 101498. doi:10.1016/j.arr.2021.101498.
|
[2] |
Doody P, Asamane EA, Aunger JA, et al. The prevalence of frailty and pre-frailty among geriatric hospital inpatients and its association with economic prosperity and healthcare expenditure: a systematic review and meta-analysis of 467, 779 geriatric hospital inpatients [J]. Ageing Res Rev, 2022, 80(1): 101666. doi:10.1016/j.arr.2022.101666.
|
[3] |
Ferriolli E, Fernandes PMP. Frailty syndrome and healthcare for older adults [J]. Sao Paulo Med J, 2024, 142(4): e20241424. doi:10.1590/1516-3180.2024.1424.21052024.
|
[4] |
Wang XR, Hu JJ, Wu DP. Risk factors for frailty in older adults [J]. Medicine, 2022, 101(34): e30169. doi:10.1097/MD.0000000000030169.
|
[5] |
Yadati T, Houben T, Bitorina A, et al. The ins and outs of cathepsins: physiological function and role in disease management [J]. Cells, 2020, 9(7): 1679. doi:10.3390/cells9071679.
|
[6] |
Bålsrud P, Ulven SM, Christensen JJ, et al. Inflammatory markers and frailty in home-dwelling elderly, a cross-sectional study [J]. BMC Geriatr, 2024, 24(1): 175. doi:10.1186/s12877-024-04690-2.
|
[7] |
Gumpper K, Sermersheim M, Zhu MX, et al. Skeletal muscle lysosomal function via cathepsin activity measurement [J]. Methods Mol Biol, 2019, 1854: 35-43. doi: 10.1007/7651_2017_64.
|
[8] |
Wan Y, Piao LM, Xu SN, et al. Cathepsin S activity controls chronic stress-induced muscle atrophy and dysfunction in mice [J]. Cell Mol Life Sci, 2023, 80(9): 254. doi:10.1007/s00018-023-04888-4.
|
[9] |
Kim J, McKenna CF, Salvador AF, et al. Cathepsin B and muscular strength are independently associated with cognitive control [J]. Brain Plast, 2022, 8(1): 19-33.
|
[10] |
Richmond RC, Davey Smith G. Mendelian randomization: concepts and scope [J]. Cold Spring Harb Perspect Med, 2022, 12(1): a040501. doi:10.1101/cshperspect.a040501.
|
[11] |
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement [J]. JAMA, 2021, 326(16): 1614-1621.
|
[12] |
常鑫, 刘世佳, 韩璐. 服用阿司匹林与子宫内膜癌发病风险的孟德尔随机化关系[J]. 山东大学学报(医学版), 2023, 61(10): 58-62. CHANG Xin, LIU Shijia, HAN Lu. A Mendelian randomization study of aspirin use and the risk of endometrial cancer [J]. Journal of Shandong University(Health Sciences), 2023, 61(10): 58-62.
|
[13] |
吴彤, 杨晶玉, 林盪, 等. 基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J]. 山东大学学报(医学版), 2024, 62(5): 54-63. WU Tong, YANG Jingyu, LIN Dang, et al. Genetic association of lipids and lipid-lowering drugs with chronic obstructive pulmonary disease based on Mendelian randomization [J]. Journal of Shandong University(Health Science), 2024, 62(5): 54-63.
|
[14] |
Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome [J]. Nature, 2018, 558(7708): 73-79.
|
[15] |
Atkins JL, Jylhävä J, Pedersen NL, et al. A genome-wide association study of the frailty index highlights brain pathways in ageing [J]. Aging Cell, 2021, 20(9): e13459. doi:10.1111/acel.13459.
|
[16] |
Li JL, Tang MB, Gao XL, et al. Mendelian randomization analyses explore the relationship between cathepsins and lung cancer [J]. Commun Biol, 2023, 6(1): 1019.
|
[17] |
Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations [J]. Bioinformatics, 2019, 35(22): 4851-4853.
|
[18] |
Zhao P, Han FY, Liang XY, et al. Causal effects of basal metabolic rate on cardiovascular disease: a bidirectional Mendelian randomization study [J]. JAm Heart Assoc, 2024, 13(1): e031447. doi:10.1161/JAHA.123.031447.
|
[19] |
Zeng RQ, Zhou ZY, Liao WZ, et al. Genetic insights into the role of cathepsins in cardiovascular diseases: a Mendelian randomization study [J]. ESC Heart Fail, 2024, 11(5): 2707-2718.
|
[20] |
Athauda SB, Takahashi T, Inoue H, et al. Proteolytic activity and cleavage specificity of cathepsin E at the physiological pH as examined towards the B chain of oxidized insulin [J]. FEBS Lett, 1991, 292(1-2): 53-56.
|
[21] |
Xie Z, Meng J, Kong W, et al. Microglial cathepsin E plays a role in neuroinflammation and amyloid β production in Alzheimers disease [J]. Aging Cell, 2022, 21(3): e13565. doi:10.1111/acel.13565.
|
[22] |
Cao WJ, Li MH, Li JX, et al. High expression of cathepsin E is associated with the severity of airflow limitation in patients with COPD [J]. COPD, 2016, 13(2): 160-166.
|
[23] |
Kurianiuk A, Socha K, Gacko M, et al. The Relationship between the concentration of cathepsin A, D, and E and the concentration of copper and zinc, and the size of the aneurysmal enlargement in the wall of the abdominal aortic aneurysm [J]. Ann Vasc Surg, 2019, 55(1):182-188.
|
[24] |
Wan Y, Piao LM, Xu SN, et al. Cathepsin S deficiency improves muscle mass loss and dysfunction via the modulation of protein metabolism in mice under pathological stress conditions [J]. FASEB J, 2023, 37(8): e23086. doi:10.1096/fj.202300395RRR.
|
[25] |
Ogasawara S, Cheng X, Inoue A, et al. Cathepsin K activity controls cardiotoxin-induced skeletal muscle repair in mice [J]. J Cachexia Sarcopenia Muscle, 2017, 9: 160-175. doi:10.1002/jcsm.12248.
|
[26] |
Celik HI, Koc F, Siyasal K, et al. Exploring the complex associations among risks of malnutrition, sarcopenia, and frailty in community-dwelling older adults [J]. Eur Rev Aging Phys Act, 2024, 21(1): 18. doi:10.1186/s11556-024-00354-7.
|