[1] |
Mocan O, Radulescu D, Buzdugan E, et al. Association between M235T-AGT and I/D-ACE polymorphisms and carotid atheromatosis in hypertensive patients: a cross-sectional study[J]. In Vivo, 2020, 34(5): 2811-2819.
|
[2] |
Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines[J]. J Am Coll Cardiol, 2014, 64(24): e139-e228.
|
[3] |
Ghazali H, Gammoudi M, Yahmadi A, et al. Acute coronary syndrome without persistent ST segment elevation in the emergency department: epidemiology, clinical features and prognosis[J]. Tunis Med, 2017, 95(12): 229-235.
|
[4] |
Liu RF, Xu FX, Zhou YJ, et al. The characteristics of risk factors in Chinese young women with acute coronary syndrome[J]. BMC Cardiovasc Disord, 2020, 20(1): 290. doi:10.1186/s12872-020-01577-z.
|
[5] |
Sanchis-Gomar F, Perez-Quilis C, Leischik R, et al. Epidemiology of coronary heart disease and acute coronary syndrome[J]. Ann Transl Med, 2016, 4(13): 256. doi:10.21037/atm.2016.06.33.
|
[6] |
Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6): 331-344.
|
[7] |
Tian JW, Hu SY, Wang F, et al. PPARG, AGTR1, CXCL16 and LGALS2 polymorphisms are correlated with the risk for coronary heart disease[J]. Int J Clin Exp Pathol, 2015, 8(3): 3138-3143.
|
[8] |
Nouryazdan N, Adibhesami G, Birjandi M, et al. Study of angiotensin-converting enzyme insertion/deletion polymorphism, enzyme activity and oxidized low density lipoprotein in Western Iranians with atherosclerosis: a case-control study[J]. BMC Cardiovasc Disord, 2019, 19(1): 184. doi:10.1186/S12872-019-1158-4.
|
[9] |
Tran DC, Le LHG, Thai TT, et al. Association between ACE I/D genetic polymorphism and the severity of coronary artery disease in Vietnamese patients with acute myocardial infarction[J]. Front Cardiovasc Med, 2023, 10: 1091612. doi:10.3389/fcvm.2023.1091612.
|
[10] |
da Silva GA, Atum ALB, de Matos LP, et al. Sexual dimorphism in the expression of cardiac and hippocampal renin-angiotensin and kallikrein-kinin systems in offspring from mice exposed to alcohol during gestation[J]. Antioxidants, 2023, 12(3): 541. doi:10.3390/antiox12030541.
|
[11] |
Nakayama T, Soma M, Saito S, et al. Association of a novel single nucleotide polymorphism of the prostacyclin synthase gene with myocardial infarction[J]. Am Heart J, 2002, 143(5): 797-801.
|
[12] |
Lemaitre RN, Rice K, Marciante K, et al. Variation in eicosanoid genes, non-fatal myocardial infarction and ischemic stroke[J]. Atherosclerosis, 2009, 204(2): e58-e63.
|
[13] |
Zhang YJ, Yang T, Zhou WJ, et al. A meta-analysis on the association of genetic polymorphism of the angiotensin-converting enzyme and coronary artery disease in the Chinese population[J]. Rev Assoc Med Bras, 2019, 65(6): 923-929.
|
[14] |
Gao M, Tang HQ, Zheng XD, et al. Association analysis of GWAS and candidate gene loci in a Chinese population with coronary heart disease[J]. Int J Clin Exp Med, 2015, 8(5): 7497-7506.
|
[15] |
Hara M, Sakata Y, Nakatani D, et al. Renin-angiotensin-aldosterone system polymorphisms and 5-year mortality in survivors of acute myocardial infarction: a report from the Osaka Acute Coronary Insufficiency Study [J]. Int Heart J, 2014, 55(3): 190-196.
|
[16] |
Dai SH, Li JF, Feng JB, et al. Association of serum levels of AngII, KLK1, and ACE/KLK1 polymorphisms with acute myocardial infarction induced by coronary artery stenosis[J]. J Renin Angiotensin Aldosterone Syst, 2016, 17(2): 1470320316655037. doi:10.1177/1470320316655037.
|
[17] |
张静. RAS基因多态性与肥胖相关性的研究进展[J]. 海南医学, 2023, 34(6): 889-893. ZHANG Jing. Research progress on the correlation between RAS gene polymorphism and obesity[J]. Hainan Medical Journal, 2023, 34(6): 889-893.
|
[18] |
Sahin S, Ceyhan K, Benli I, et al. Traditional risk factors and angiotensin-converting enzyme insertion/deletion gene polymorphism in coronary artery disease[J]. Genet Mol Res, 2015, 14(1): 2063-2068.
|
[19] |
Susilo H, Pikir BS, Thaha M, et al. The effect of angiotensin converting enzyme(ACE)I/D polymorphism on atherosclerotic cardiovascular disease and cardiovascular mortality risk in non-hemodialyzed chronic kidney disease: the mediating role of plasma ACE level[J]. Genes, 2022, 13(7): 1121. doi:10.3390/genes13071121.
|
[20] |
Dai SH, Ding M, Liang N, et al. Associations of ACE I/D polymorphism with the levels of ACE, kallikrein, angiotensin II and interleukin-6 in STEMI patients[J]. Sci Rep, 2019, 9(1): 19719. doi:10.1038/s41598-019-56263-8.
|
[21] |
Moorthy N, Saligrama Ramegowda K, Jain S, et al. Role of Angiotensin-Converting Enzyme(ACE)gene polymorphism and ACE activity in predicting outcome after acute myocardial infarction[J]. Int J Cardiol Heart Vasc, 2021, 32: 100701. doi:10.1016/j.ijcha.2020.100701.
|
[22] |
Fu SS, Li FJ, Wang YY, et al. Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression[J]. PLoS One, 2013, 8(9): e73035. doi:10.1371/journal.pone.0073035.
|
[23] |
Zhang Q, Ran X, Wang DW. Relation of plasma tissue kallikrein levels to presence and severity of coronary artery disease in a Chinese population[J]. PLoS One, 2014, 9(3): e91780. doi:10.1371/journal.pone.0091780.
|
[24] |
吴永茂, 李泽荣, 朱深政. 血清KLK1、RBP4及SYNTAX-11评分预测血运重建后STEMI患者预后的临床价值[J]. 中国急救复苏与灾害医学杂志, 2022, 17(2): 217-220. WU Yongmao, LI Zerong, ZHU Shenzheng. Clinical value of serum KLK1 and RBP4 and SYNTAX-11 score in predicting the prognosis of STEMI after revascularization [J]. China Journal of Emergency Resuscitation and Disaster Medicine, 2022, 17(2): 217-220.
|
[25] |
Xiang X, Ma YT, Fu ZY, et al. Haplotype analysis of the CYP8A1 gene associated with myocardial infarction[J]. Clin Appl Thromb Hemost, 2009, 15(5): 574-580.
|