您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (12): 96-104.doi: 10.6040/j.issn.1671-7554.0.2025.1124

• 临床医学 • 上一篇    

缺氧条件下γ-氨基丁酸能系统对视网膜色素上皮的保护作用

曲忠花1,迟令懿2,马志勇1,程振英1,3,王旭平1   

  1. 1.山东大学齐鲁医院络病理论创新转化全国重点实验室, 心血管重构和功能研究教育部和国家卫健委重点实验室, 山东 济南 250012;2.山东大学齐鲁医院神经外科, 山东 济南 250012;3.山东大学齐鲁医院眼科, 山东 济南 250012
  • 发布日期:2025-12-19
  • 通讯作者: 王旭平. E-mail:wangxuping@126.com
  • 基金资助:
    国家自然科学基金(81770796)

Protective role of GABAergic system in retinal pigment epithelium under hypoxia

QU Zhonghua1, CHI Lingyi2, MA Zhiyong1, CHENG Zhenying1,3, WANG Xuping1   

  1. 1. State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    3. Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2025-12-19

摘要: 目的 探讨缺氧条件下γ-氨基丁酸(gama-aminobutyric acid, GABA)能系统在人视网膜色素上皮(retinal pigment epithelium, RPE)细胞中的作用及其机制,为防治缺氧相关视网膜疾病提供理论依据。 方法 分离并培养人RPE细胞,采用RT-PCR法、Western blotting法检测GABA相关分子[谷氨酸脱羧酶65/67(glutamic acid decarboxylase 65/67, GAD65/67)、γ-氨基丁酸转氨酶(GABA transaminase, GABA-T)、囊泡性GABA转运体(vesicular GABA transporter, VGAT)、GABA转运体1/2(GABA transporters 1/2, GAT-1/2)]的表达。利用免疫荧光技术检测人RPE细胞及人视网膜组织中GAD67、GABA-T和GAT-2的表达与定位。将RPE细胞暴露于缺氧环境中(1% O2,37 ℃,48 h),检测GAD67、GABA-T和GAT-2表达变化、单层细胞通透性和紧密连接蛋白(zonula occludens-1, ZO-1)水平。将细胞分为常氧空载体对照组、常氧基因过表达组、低氧空载体组以及低氧基因过表达组。通过腺病毒载体分别过表达GAD67、GABA-T或GAT-2,评估其对缺氧诱导的RPE细胞屏障功能损伤的影响。 结果 人RPE细胞表达GAD67、GABA-T和GAT-2,但未检测到GAD65、VGAT和GAT-1的表达。与常氧对照组相比,低氧组各基因蛋白GAD67[(17.54±6.89)%,t=2.595,P<0.05]、GABA-T[(18.64±3.56)%,t=3.563,P<0.01]和GAT-2[(31.79±8.49)%,t=4.147,P<0.01]表达显著下调;同时单层RPE细胞的通透性增加[(78.83±34.79)%,t=-3.222,P<0.05], ZO-1水平降低[(22.24±8.31)%,t=3.217,P<0.01]。与低氧空载体对照组相比,低氧过表达GAD67或GABA-T组中升高的RPE细胞通透性减轻了(21.97±11.02)%和(21.40±7.65)%,差异有统计学意义(FGAD67=14.146, FGABA-T=35.715, PGAD67<0.05, PGABA-T<0.01)。与低氧空载体对照组相比,低氧GAT-2 过表达组在无外源 GABA 添加时未表现出明显保护作用(组间P=0.001, P>0.05,),但在加入外源 GABA 后, GAT-2过表达使得缺氧诱导下的RPE细胞通透性下降了(34.49±14.70)%(F=20.084, P<0.01)。此外,GAD67、GABA-T和GAT-2的过表达均未能逆转缺氧导致的ZO-1蛋白降低。 结论 人RPE细胞表达GABA能系统。在缺氧条件下,GABA能相关蛋白表达降低并伴随屏障功能损伤。增强GAD67、GABA-T表达可显著改善缺氧诱导的RPE细胞屏障功能异常,GAT-2过表达在补充外源GABA时亦有保护作用,提示GABA能系统可能成为改善缺氧相关视网膜疾病RPE屏障功能的潜在靶点。

关键词: 视网膜色素上皮细胞, γ-氨基丁酸, γ-氨基丁酸能系统, 缺氧, 屏障功能, 紧密连接蛋白

Abstract: Objective To investigate the role and mechanism of the γ-aminobutyric acid-ergic(GABAergic)system in human retinal pigment epithelial(RPE)cells under hypoxic conditions, and to provide a theoretical basis for the prevention and treatment of hypoxia-related retinal diseases. Methods Human RPE cells were isolated and cultured. The expression of GABA-related molecules-glutamic acid decarboxylase 65/67(GAD65/67), GABA transaminase(GABA-T), vesicular GABA transporter(VGAT), and GABA transporters 1/2(GAT-1/2)-was detected by RT-PCR and Western blotting. Immunofluorescence was employed to examine the expression and localization of GAD67, GABA-T, and GAT-2 in cultured human RPE cells and human retinal tissue. Cells were exposed to a hypoxic environment(1% O2, 37 ℃, 48 h), and changes in GAD67, GABA-T, and GAT-2 expression, monolayer permeability, and zonula occludens-1(ZO-1)level were analyzed. RPE cells were divided into four groups: empty vector + normoxia, gene overexpression + normoxia, empty vector + hypoxia, and gene overexpression + hypoxia. Adenoviral vectors were used to overexpress GAD67, GABA-T, and GAT-2, and their protective effects against hypoxia-induced barrier dysfunction in RPE cells were evaluated. Results RT-PCR and Western blotting analyses revealed that human RPE cells expressed GAD67, GABA-T, and GAT-2, whereas GAD65, VGAT, and GAT-1 were undetectable. Compared with the normoxic group, hypoxia significantly downregulated GAD67 [(17.54±6.89)%, t=2.595, P<0.05], GABA-T [(18.64±3.56)%, t=3.563, P<0.01], and GAT-2 [(31.79±8.49)%, t=4.147, P<0.01]; increased RPE monolayer permeability [(78.83±34.79)%, t=-3.222, P<0.05]; and reduced ZO-1 levels [(22.24±8.31)%, t=3.217, P<0.01]. Compared with the hypoxic empty vector, overexpression of GAD67 or GABA-T alleviated the hypoxia-induced increase in RPE cell permeability by(21.97±11.02)% and(21.40±7.65)%, respectively. The differences were statistically significant(FGAD67=14.146, FGABA-T=35.715, PGAD67<0.05, PGABA-T<0.01). In contrast to the hypoxic empty vector control group, GAT-2 overexpression did not exhibit a significant protective effect in the absence of exogenous GABA(intergroup P=0.001, P>0.05). However, with the addition of exogenous GABA, GAT-2 overexpression reduced the hypoxia-induced RPE cell permeability by(34.49±14.70)%(F=20.084, P<0.01). None of the overexpressed genes reversed hypoxia-induced reduction of ZO-1 protein. Conclusions Human RPE cells express key components of the GABAergic system. Hypoxia reduces the expression of GABA-related proteins and impairs barrier integrity. Upregulation of GAD67 or GABA-T expression significantly alleviates hypoxia-induced barrier dysfunction in RPE cells. Overexpression of GAT-2 also exhibits a protective effect when supplemented with exogenous GABA. These findings suggest that the GABAergic system may serve as a potential target for improving RPE barrier function in hypoxia-related retinal diseases.

Key words: Retinal pigment epithelial cells, γ-aminobutyric acid, GABAergic system, Hypoxia, Barrier function, Tight junction protein

中图分类号: 

  • R774.1
[1] Hellinen L, Sato K, Reinisalo M, et al. Quantitative protein expression in the human retinal pigment epithelium: comparison between apical and basolateral plasma membranes with emphasis on transporters[J]. Invest Ophthalmol Vis Sci, 2019, 60(15): 5022-5034.
[2] Yang S, Yu F, Yang ML, et al. CYLD maintains retinal homeostasis by deubiquitinating ENKD1 and promoting the phagocytosis of photoreceptor outer segments[J]. Adv Sci, 2024, 11(45): 2404067.
[3] Strauss O. The retinal pigment epithelium in visual function[J]. Physiol Rev, 2005, 85(3): 845-881.
[4] Rizzolo LJ, Peng SM, Luo Y, et al. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium[J]. Prog Retin Eye Res, 2011, 30(5): 296-323.
[5] Yang S, Zhou J, Li DW. Functions and diseases of the retinal pigment epithelium[J]. Front Pharmacol, 2021, 12: 727870. doi: 10.3389/fphar.2021.727870.
[6] Wong JHC, Ma JYW, Jobling AI, et al. Exploring the pathogenesis of age-related macular degeneration: a review of the interplay between retinal pigment epithelium dysfunction and the innate immune system[J]. Front Neurosci, 2022, 16: 1009599. doi: 10.3389/fnins.2022.1009599
[7] Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia[J]. Invest Ophthalmol Vis Sci, 2011, 52(5): 2160-2164.
[8] Zhang QL, Zhu L, Li HL, et al. Insights and progress on the biosynthesis, metabolism, and physiological functions of gamma-aminobutyric acid(GABA): a review[J]. PeerJ, 2024 12:18712. doi: 10.7717/peerj.18712
[9] Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: why?[J]. Trends Pharmacol Sci, 1998,19(12): 500-505.
[10] Le HV, Hawker DD, Wu R, et al. Design and mechanism of tetrahydrothiophene-based γ-aminobutyric acid aminotransferase inactivators[J]. J Am Chem Soc, 2015, 137(13): 4525-4533.
[11] McIntire SL, Reimer RJ, Schuske K, et al. Identification and characterization of the vesicular GABA transporter[J]. Nature, 1997, 389(6653): 870-876.
[12] Conti F, Minelli A, Melone M. GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications[J]. Brain Res Rev, 2004, 45(3): 196-212.
[13] Huang B, Mitchell CK, Redburn-Johnson DA. GABA and GABA(A)receptor antagonists alter developing cone photoreceptor development in neonatal rabbit retina[J]. Vis Neurosci, 2000, 17(6): 925-935.
[14] Song YB, Slaughter MM. GABAB receptor feedback regulation of bipolar cell transmitter release[J]. J Physiol, 2010, 588(24): 4937-4949.
[15] Zaidi S, Gallos G, Yim PD, et al. Functional expression of γ-amino butyric acid transporter 2 in human and guinea pig airway epithelium and smooth muscle[J]. Am J Respir Cell Mol Biol, 2011, 45(2): 332-339.
[16] Li SY, Kumar T P, Joshee S, et al. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior[J]. Cell Res, 2018, 28(2): 221-248.
[17] Negri S, Scolari F, Vismara M, et al. GABAA and GABAB receptors mediate GABA-induced intracellular Ca2+ signals in human brain microvascular endothelial cells[J]. Cells, 2022, 11(23): 3860.
[18] Henning Y, Blind US, Larafa S, et al. Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction[J]. Cell Death Dis, 2022, 13: 662. doi: 10.1038/s41419-022-05121-z
[19] Zhu JM, Ding DM, Sun T, et al. Oridonin preserves retinal pigmented epithelial cell tight junctions and ame-liorates choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2025, 66(2): 56.
[20] Kernt M, Thiele S, Liegl RG, et al. Axitinib modulates hypoxia-induced blood-retina barrier permeability and expression of growth factors[J]. Growth Factors, 2012, 30(1): 49-61.
[21] 欧阳昌汉, 郭莲军, 吕青, 等. γ-氨基丁酸对急性不完全性全脑缺血大鼠脑组织氨基酸和钙离子含量的影响[J]. 中国药理学与毒理学杂志, 2004, 18(4): 248-252. OUYANG Changhan, GUO Lianjun, LV Qing, et al. Effects of γ-aminobutyric acid on amino acids and calcium levels in rat brain of acute incomplete global cerebral ischemia[J]. Chinese Journal of Pharmacology and Toxicology, 2004, 18(4): 248-252.
[22] 王庆胜, 曹杰, 袁莉. γ-氨基丁酸对代谢相关脂肪性肝病糖脂代谢紊乱的影响[J]. 中国医药导报, 2025, 22(6): 25-31. WANG Qingsheng, CAO Jie, YUAN Li. Effect of gamma-aminobutyric acid on glucose and lipid metabolism in metabolism disorders in metabolism-related fatty liver disease [J]. China Medical Herald, 2025, 22(6): 25-31.
[23] 蒋廷媛, 岳源, 李芳华. γ-氨基丁酸改善2,4,6-三硝基苯磺酸-乙醇诱导的结肠炎肠黏膜屏障损伤作用[J]. 医药导报, 2018, 37(8): 931-938. JIANG Tingyuan, YUE Yuan, LI Fanghua. Improvement of Gamma-aminobutyric Acid on Intestinal Mucosalbarrier Injury of Colitis Induced by 2, 4, 6-trinitrobenzene Sulfonic Acid and Alcohol[J]. Herald of Medicine, 2018, 37(8): 931-938.
[24] Cheng ZY, Wang XP, Schmid KL, Li, et al. Identification of GABA receptors in chick retinal pigment epithelium[J]. Neurosci Lett, 2013, 539: 43-47. doi: 10.1016/j.neulet.2013.01.038
[25] Choi EH, Suh S, Einstein DE, et al. An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease[J]. JCI Insight, 2021, 6(9): e146604.
[26] 魏丹丹, 宋宇涵, 王淇, 等. 年龄相关性黄斑变性的研究进展[J]. 基础医学与临床, 2024, 44(4): 553-557. WEI Dandan, SONG Yuhan, WANG Qi, et al. Research advances on the age-related macular degeneration[J]. Basic and Clinical Medicine, 2024, 44(4): 553-557.
[27] 韦嘉仪, 王方. 视网膜色素上皮细胞间连接完整性的新认识[J]. 中华实验眼科杂志, 2022, 40(7): 670-674. WEI Jiayi, WANG Fang. New insights into the integrity of intercellular junctions between retinal pigment epithelial cells[J]. Chinese Journal of Experimental Ophthalmology, 2022, 40(7): 670-674.
[28] Fanning AS, Ma TY, Anderson JM. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1[J]. FASEB J, 2002,16(13): 1835-1837.
[29] Itoh M, Furuse M, Morita K, et al. Direct binding of three tight junction-associated Maguks, Zo-1, Zo-2, and Zo-3, with the Cooh termini of claudins[J]. J Cell Biol, 1999, 147(6): 1351-1363.
[30] Furuse M, Hata M, Furuse K, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier [J]. J Cell Biol, 2002, 156(6): 1099-1111.
[31] Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability[J]. J Cell Sci, 2008, 121(13):2115-2122.
[32] Balda MS, Matter K. Tight junctions at a glance[J]. J Cell Sci, 2008,121(22): 3677-3682.
[33] Strauss RE, Gourdie RG. Cx43 and the actin cytoskeleton: novel roles and implications for cell-cell junction-based barrier function regulation[J]. Biomolecules, 2020, 10(12): 1656.
[34] Gündüz D, Aslam M, Krieger U, et al. Opposing effects of ATP and adenosine on barrier function of rat coronary microvasculature[J]. J Mol Cell Cardiol, 2012, 52(5): 962-970.
[1] 樊荣,李彬彬,马晓丽,汪运山,郏雁飞. 胃癌中DEC2、HIF-2α的表达及临床意义[J]. 山东大学学报 (医学版), 2023, 61(7): 12-18.
[2] 华月帆,何珂瑶,张家豪,钱梦凡,刘怡文,孔金玉,杨海军,周福有. 具核梭杆菌诱导缺氧诱导因子及血管生成因子高表达对食管鳞癌患者生存预后的影响[J]. 山东大学学报 (医学版), 2023, 61(11): 59-67.
[3] 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88.
[4] 徐歌,李青,张灿灿,田永杰. 子宫腺肌病组织及原代细胞中PARP-1、HIF-1α的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(4): 55-61.
[5] 田祥奇,王皓,徐新荣,方雨晴,毛飞,赵张宁,赵海龙,吴丙云,李秀华. 超低频经颅磁刺激对帕金森病睡眠障碍患者的疗效观察[J]. 山东大学学报 (医学版), 2022, 60(12): 19-25.
[6] 熊超,刘力,冯建国,魏继承. 七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 25-30.
[7] 张智慧,王丽丽,高华,张健,李娟,李远,武春晓,卢志明. 肺腺癌中缺氧诱导因子-1α调控程序性死亡因子配体1的表达[J]. 山东大学学报(医学版), 2017, 55(4): 65-70.
[8] 赵栋燕,于岩波,左秀丽. 脑源性神经营养因子在小鼠肠黏膜屏障中的作用[J]. 山东大学学报(医学版), 2016, 54(7): 1-5.
[9] 朱静,郭爱丽,张楠,秦明明,刘立娟,朱薇薇. 促红细胞生成素治疗新生儿缺氧缺血性脑病的疗效观察[J]. 山东大学学报(医学版), 2016, 54(4): 60-63.
[10] 席福立,张梅. MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控[J]. 山东大学学报(医学版), 2016, 54(2): 6-10.
[11] 庄根苗,唐玲,臧丽娇,安丽. 新生儿缺氧缺血性脑病中血清前白蛋白水平与新生儿行为神经测定的相关性[J]. 山东大学学报(医学版), 2016, 54(12): 37-40.
[12] 范少华, 张轶超, 袁晓东, 毕景雯, 张一辰, 李云. 全脑缺血大鼠脑组织MiR210和stat3的表达与HIF-1α的相关性[J]. 山东大学学报(医学版), 2015, 53(3): 1-5.
[13] 周晓艳, 李铭, 郭婧, 左秀丽, 李延青. 黏液填充在消化道上皮微缺损及肠屏障功能中的作用[J]. 山东大学学报(医学版), 2015, 53(12): 62-66,80.
[14] 李媛媛, 张楠, 徐谧, 秦明明, 窦冬冬, 朱薇薇. 新生小鼠缺氧缺血脑组织基质细胞衍生因子1α的表达及其作用[J]. 山东大学学报(医学版), 2015, 53(10): 26-31.
[15] 王晗, 石莎, 陈飞雪, 李月月, 曹静, 左秀丽, 李延青. 共聚焦激光显微内镜在体评估NSAIDs相关胃病及其药物干预效果[J]. 山东大学学报(医学版), 2014, 52(8): 6-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!