您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (8): 86-93.doi: 10.6040/j.issn.1671-7554.0.2025.0117

• 临床研究 • 上一篇    

基于自注意力机制预测ICU脓毒症患者的死亡率

李晓琪1,刘佩丽1,成红2,赵艳艳1   

  1. 1.山东大学齐鲁医学院公共卫生学院, 山东 济南 250012;2.邹平市中心医院骨科, 山东 邹平 256212
  • 发布日期:2025-08-25
  • 通讯作者: 赵艳艳. E-mail:yanyan.zhao@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2022QA013)

Predicting ICU sepsis mortality using self-attention mechanism

LI Xiaoqi1, LIU Peili1, CHENG Hong2, ZHAO Yanyan1   

  1. 1. School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Orthopedics, Zouping Central Hospital, Zouping 256212, Shandong, China
  • Published:2025-08-25

摘要: 目的 基于自注意力机制模型预测重症加强护理病房(Intensive Care Unit, ICU)脓毒症患者死亡率。 方法 在MIMIC-IV数据库中选取符合Sepsis-3标准的脓毒症患者,使用多重logistic回归分析种族对脓毒症患者死亡率的影响,通过构建纳入或未纳入种族特征的预测模型,并且比较其性能差异,进一步评估是否将种族纳入预测模型。将数据集按1∶1比例分为训练集和验证集。使用二分类交叉熵损失函数和Adam优化器在训练集上进行1 000次迭代训练,并在验证集上评估模型性能。性能指标包括受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)和准确率。 结果 共纳入16 521例脓毒症患者。多重logistic回归分析结果显示,种族与ICU脓毒症患者死亡率无显著关联。训练集中构建的纳入或未纳入种族特征的模型在验证集中AUC均为0.82,准确率均为0.88,优于传统评分系统(如OASIS AUC: 0.70;LODS AUC: 0.74;SAPSII AUC: 0.75)。 结论 种族特征对于脓毒症患者死亡率的预测无明显影响,基于自注意力机制构建的预测模型显著提高了对ICU脓毒症患者死亡率的预测性能,表现优于传统评分系统。

关键词: 重症加强护理病房, 脓毒症, 预测, 死亡率, 自注意力机制

Abstract: Objective To predict sepsis mortality in Intensive Care Unit(ICU)using a self-attention mechanism model. Methods Sepsis patients who meet the Sepsis-3 criteria were selected from the MIMIC-IV database. Multiple logistic regression analysis was performed to assess the impact of ethnicity on sepsis mortality. To further validate this relationship, parallel predictive models(with and without ethnicity)were constructed and their performance metrics were compared. The dataset was split into training and validation sets at a 1∶1 ratio. A binary cross-entropy loss function and the Adam optimizer were used to train the model for 1,000 iterations on the training set, and the models performance was evaluated on the validation set. Performance metrics included the area under the curve(AUC)of receiver operating characteristic(ROC)and accuracy. Results A total of 16,521 sepsis patients were included. The multiple logistic regression analysis showed no significant relationship between ethnicity and mortality, so ethnicity was not included in the subsequent model. Both models(with/without ethnicity)achieved identical AUC(0.82)and accuracy(0.88)on the validation set, outperforming traditional scoring systems(e.g., OASIS AUC: 0.70; LODS AUC: 0.74; SAPSII AUC: 0.75). Conclusion Ethnicity has no significant effect on the prediction of mortality in patients with sepsis. The prediction model built on the self-attention mechanism significantly improves the prediction performance of ICU sepsis mortality, outperforming traditional scoring systems.

Key words: Intensive Care Unit, Sepsis, Prediction, Mortality, Self-attention mechanism

中图分类号: 

  • R631+.3
[1] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8): 801-810.
[2] Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211.
[3] Kong G, Lin K, Hu Y. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU[J]. BMC Med Inform Decis Mak, 2020, 20: 251. doi:10.1186/s12911-020-01271-2
[4] Gao J, Lu Y, Ashrafi N, et al. Prediction of sepsis mortality in ICU patients using machine learning methods[J]. BMC Med Inform Decis Mak, 2024, 24: 228. doi:10.1186/s12911-024-02630-z
[5] Khojandi A, Tansakul V, Li X, et al. Prediction of sepsis and in-hospital mortality using electronic health records[J]. Methods Inf Med, 2018, 57(4): 185-193.
[6] Bao C, Deng F, Zhao S. Machine-learning models for prediction of sepsis patients mortality[J]. Med Intensiva(Engl Ed), 2023, 47(6): 315-325.
[7] Zhang Y, Xu W, Yang P, et al. Machine learning for the prediction of sepsis-related death: a systematic review and Meta-analysis[J]. BMC Med Inform Decis Mak, 2023, 23(1): 283. doi:10.1186/s12911-023-02383-1
[8] 詹贤春, 程恒亮, 李维华. 基于注意力的融合模型预测脓毒症患者死亡率[J]. 云南大学学报(自然科学版), 2024, 46(5): 829-837. ZHAN Xianchun, CHENG Hengliang, LI Weihua. Attention-based fusion model to predict mortality of sepsis patients[J]. Journal of Yunnan University: Natural Sciences Edition, 2024, 46(5): 829-837.
[9] Hou N, Li M, He L, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using Xgboost[J]. J Transl Med, 2020, 18(1): 462. doi:10.1186/s12967-020-02620-5
[10] Nikravangolsefid N, Reddy S, Truong HH, et al. Machine learning for predicting mortality in adult critically ill patients with sepsis: a systematic review[J]. J Crit Care, 2024, 84: 154889. doi:10.1016/j.jcrc.2024.154889
[11] Sarraf E, Sadr AV, Abedi V, et al. Enhancing sepsis prognosis: integrating social determinants and demographic variables into a comprehensive model for critically ill patients[J]. J Crit Care, 2024, 83: 154857. doi:10.1016/j.jcrc.2024.154857
[12] Black LP, Hopson C, Puskarich MA, et al. Racial disparities in septic shock mortality: a retrospective cohort study[J]. Lancet Reg Health Am, 2023, 29. doi:10.1016/j.lana.2023.100646
[13] Galiatsatos P, Sun J, Welsh J, et al. Health disparities and sepsis: a systematic review and Meta-analysis on the influence of race on sepsis-related mortality[J]. J Racial Ethn Health Disparities, 2019, 6(5): 900-908.
[14] Erickson SE, Vasilevskis EE, Kuzniewicz MW, et al. The effect of race and ethnicity on outcomes among patients in the intensive care unit: a comprehensive study involving socioeconomic status and resuscitation preferences[J]. Crit Care Med, 2011, 39(3): 429-435.
[15] Jones JM, Fingar KR, Miller MA, et al. Racial disparities in sepsis-related in-hospital mortality: using a broad case capture method and multivariate controls for clinical and hospital variables, 2004-2013[J]. Crit Care Med, 2017, 45(12): e1209-e1217.
[16] Chaudhary NS, Donnelly JP, Wang HE. Racial differences in sepsis mortality at U.S. academic medical center-affiliated hospitals[J]. Crit Care Med, 2018, 46(6): 878-883.
[17] Sandoval E, Chang DW. Association between race and case fatality rate in hospitalizations for sepsis[J]. J Racial Ethn Health Disparities, 2016, 3(4): 625-634.
[18] Zhang Y, Liu C, Liu M, et al. Attention is all you need: utilizing attention in AI-enabled drug discovery[J]. Brief Bioinform, 2024, 25(1): bbad467. doi:10.1093/bib/bbad467
[19] Johnson A, Bulgarelli L, Pollard T, et al. MIMIC-IV(version 2.2)[EB/OL].(2023-01-06)[2025-01-26]. https://doi.org/10.13026/6mm1-ek67
[20] Kalimouttou A, Lerner I, Cheurfa C, et al. Machine-learning-derived sepsis bundle of care[J]. Intens Care Med, 2023, 49(1): 26-36.
[21] Sarkar R, Martin C, Mattie H, et al. Performance of intensive care unit severity scoring systems across diffe-rent ethnicities in the USA: a retrospective observational study[J]. Lancet Digit Health, 2021, 3(4): 241-249.
[22] Angus DC, Van Der Poll T. Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369(9): 840-851.
[23] Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study[J]. Crit Care Med, 2006, 34(2): 344-353.
[24] Azkárate I, Choperena G, Salas E, et al. Epidemiology and prognostic factors in severe sepsis/septic shock. Evolution over six years[J]. Med Intensiva, 2016, 40(1): 18-25.
[25] van Vught LA, Klouwenberg PMCK, Spitoni C, et al. Incidence, risk factors, and attributable mortality of secondary infections in the Intensive Care Unit after admission for sepsis[J]. JAMA, 2016, 315(14): 1469-1479.
[26] Vincent JL, Moreno R, Takala J, et al. The SOFA(Sepsis-related Organ Failure Assessment)score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 1996, 22(7): 707-710.
[27] Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score(SAPS II)based on a Euro-pean/North American multicenter study[J]. JAMA, 1993, 270(24): 2957-2963.
[28] Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): 1063-1143.
[29] Taylor SP, Karvetski CH, Templin MA, et al. Hospital differences drive antibiotic delays for black patients compared with white patients with suspected septic shock[J]. Crit Care Med, 2018, 46(2): 126-131.
[30] Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychol Rev, 1958, 65(6): 386-408.
[31] Mao A, Mohri M, Zhong Y. Cross-entropy loss functions: theoretical analysis and applications. International conference on Machine learning[EB/OL].(2023-06-20)[2025-01-26]. https://arxiv.org/abs/2304.07288
[32] Kingma DP, Ba J. Adam: a method for stochastic optimization[EB/OL].(2017-01-30)[2025-01-26]. https://doi.org/10.48550/arXiv.1412.6980
[33] Koköfer A, Mamandipoor B, Flamm M, et al. The impact of ethnic background on ICU care and outcome in sepsis and septic shock-a retrospective multicenter analysis on 17,949 patients[J]. BMC Infect Dis, 2023, 23(1): 194. doi:10.1186/s12879-023-08170-7
[34] Prest J, Sathananthan M, Jeganathan N. Current trends in sepsis-related mortality in the United States[J]. Crit Care Med, 2021, 49(8): 1276-1284.
[35] McGowan SK, Sarigiannis KA, Fox SC, et al. Racial disparities in ICU outcomes: a systematic review[J]. Crit Care Med, 2022, 50(1): 1-20.
[36] Limaye NP, Matias WR, Rozansky H, et al. Limited English proficiency and sepsis mortality by race and ethnicity[J]. JAMA Netw Open, 2024, 7(1): e2350373. doi:10.1001/jamanetworkopen.2023.50373
[37] Zimmerman JE, Kramer AA, McNair DS, et al. Acute Physiology and Chronic Health Evaluation(APACHE)IV: hospital mortality assessment for todays critically ill patients[J]. Crit Care Med, 2006, 34(5): 1297-1310.
[1] 申路佳,逯天威,巩伟明,赵岩松,王淑康,袁中尚. 代谢风险评分在2型糖尿病人群心血管结局预测中的应用[J]. 山东大学学报 (医学版), 2025, 63(8): 69-78.
[2] 张润泽,薛付忠,杨帆. 基于多模态解耦对比学习的癌症亚型聚类方法[J]. 山东大学学报 (医学版), 2025, 63(8): 51-60.
[3] 王梦星,薛付忠,杨帆. 基于多模态交叉注意力机制融合的1型糖尿病血糖浓度预测方法[J]. 山东大学学报 (医学版), 2025, 63(8): 41-50.
[4] 李千,杨帆,薛付忠. 基于多模态数据融合的多癌种风险预测模型[J]. 山东大学学报 (医学版), 2025, 63(8): 79-85.
[5] 葛雪,赵红艳. 疱疹病毒感染对重症肺炎患者临床预后及呼吸道微生态的影响[J]. 山东大学学报 (医学版), 2025, 63(6): 27-37.
[6] 王丽云,高天勤,刘雨佳,陈青,陈柳,沙凯辉. 基于机器学习产后压力性尿失禁风险预测模型的构建及验证[J]. 山东大学学报 (医学版), 2025, 63(6): 55-66.
[7] 杜雪,李春霞,刘云霞,张涛. 基于MFPC-Cox的结直肠癌患者预后动态预测模型[J]. 山东大学学报 (医学版), 2025, 63(5): 101-110.
[8] 陈瑛翼,游倩,王意,张帆,李凤,季舒铭,徐浩源,饶志勇. 办公室职员肌肉质量减少预测模型的开发与验证[J]. 山东大学学报 (医学版), 2025, 63(4): 26-35.
[9] 王宝炫,焦杰,张厚君,刘奇,于冠英. 衰弱与肌少症评估在胃肠道肿瘤术后结局预测中的应用与展望[J]. 山东大学学报 (医学版), 2025, 63(4): 51-58.
[10] 李敬,郝盼盼. 急性心力衰竭患者出入院心率变化与预后相关性[J]. 山东大学学报 (医学版), 2025, 63(4): 75-82.
[11] 李永,崔书君,杨飞,张凡,殷晓霞. 基于增强MRI的亚区域影像组学模型可预测乳腺癌患者新辅助化疗后的病理完全反应[J]. 山东大学学报 (医学版), 2025, 63(1): 81-89.
[12] 孙丽娜,白红艳,牛宗格,张福帅,曲仪庆. 基于SII构建及评价预测ARDS住院死亡率的在线临床风险模型[J]. 山东大学学报 (医学版), 2024, 62(7): 10-20.
[13] 郭振江,王宁,赵光远,杜立强,崔朝勃,刘防震. 基于机器学习建立术前预测近端胃癌食管切缘阳性模型[J]. 山东大学学报 (医学版), 2024, 62(7): 78-83.
[14] 刁玉洁,林琳,李文瑄,王洲洋,江蓓,胡迎迎,刘广义. NPR预测ANCA相关血管炎不良肾脏预后及其协同多因素优化模型[J]. 山东大学学报 (医学版), 2024, 62(2): 60-68.
[15] 王玉淼,崔晓霈,张红雨. 高龄老年新型冠状病毒肺炎患者应用抗凝治疗的短期疗效和安全性[J]. 山东大学学报 (医学版), 2024, 62(12): 21-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!