您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (6): 78-88.doi: 10.6040/j.issn.1671-7554.0.2024.1427

• 临床医学 • 上一篇    

基于外周血单个核细胞ATM基因甲基化的联合模型在胰腺癌早期诊断中的价值

祝永才1,谢艳2,齐秋晨1,李培龙1,王传新1,杜鲁涛2   

  1. 1.山东大学第二医院检验医学中心, 山东 济南 250033;2.山东大学齐鲁医院检验医学中心, 山东 济南 250012
  • 发布日期:2025-07-08
  • 通讯作者: 杜鲁涛. E-mail:lutaodu@sdu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFC2413200)

Value of a combined model based on ATM gene methylation of peripheral blood mononuclear cells in the early diagnosis of pancreatic cancer

ZHU Yongcai1, XIE Yan2, QI Qiuchen1, LI Peilong1, WANG Chuanxin1, DU Lutao2   

  1. 1. Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shangdong, China;
    2. Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shangdong, China
  • Published:2025-07-08

摘要: 目的 利用随机森林算法建立并验证基于共济失调毛细血管扩张突变(ataxia telangiectasia mutated, ATM)基因甲基化和临床检验指标的胰腺癌联合诊断模型,为胰腺癌的早期诊断提供新途径。 方法 回顾性收集118例胰腺癌患者(胰腺癌组)和73例健康对照者(健康对照组)的外周血单个核细胞(peripheral blood mononuclear cells, PBMCs)标本以及临床检验指标检测结果,分为发现集、训练集和验证集。在发现集中,利用935K甲基化芯片对两组的PBMCs样本进行差异甲基化位点(differentially methylated points, DMPs)分析。在训练集和验证集样本中,采用焦磷酸测序对候选DMP进行验证。在训练集中,利用随机森林算法进行变量筛选并构建联合诊断模型,并采用受试者工作特征(receiver operating characteristic, ROC)曲线在验证集中评价模型在胰腺癌各期以及在糖类抗原19-9(carbohydrate antigen 19-9, CA19-9)阴性患者中的诊断效能。 结果 甲基化芯片结果显示,以|Δβ|≥0.1,P<0.01的筛选条件,获得132个DMPs,其中ATM基因DMP的甲基化水平在胰腺癌组的PBMCs中显著高表达,且能够区分胰腺癌组和健康对照组(AUC=0.871,P<0.001)。焦磷酸测序结果进一步表明,胰腺癌组PBMCs的ATM基因DMP呈高甲基化水平。基于随机森林算法的变量筛选获得3个变量ATM基因DMP、CA19-9和白蛋白(albumin, ALB),在训练集和验证集中,CA19-9表达水平在胰腺癌组中显著升高(P<0.001),ALB表达水平明显降低(P<0.001)。以上述3个变量水平为特征,训练集中通过随机森林构建的联合诊断模型(“AmCA”)对胰腺癌诊断效能的曲线下面积(area under the curve, AUC)为0.992(95%CI:0.952~1.000)。验证集中模型对胰腺癌诊断效能的AUC为0.982(95%CI:0.895~1.000),优于单独CA19-9的AUC值[0.840(95%CI:0.705~0.930)];模型对早期胰腺癌诊断效能良好,Ⅰ期和Ⅱ期胰腺癌诊断效能的AUC分别为1.000(95%CI:0.863~1.000)和0.979(95%CI:0.840~1.000)。模型对CA19-9阴性胰腺癌患者诊断效能的AUC为0.751(95%CI:0.639~0.843),敏感度为52.2%,特异度为98.1%。 结论 ATM基因在胰腺癌患者的PBMCs中呈高甲基化水平,以ATM基因高甲基化、高CA19-9和低ALB水平为特征,借助随机森林算法构建的联合诊断模型在胰腺癌的早期诊断中具有重要临床价值,并能够弥补常规标志物CA19-9诊断性能不足。

关键词: 胰腺癌, 外周血单个核细胞, DNA甲基化, 早期诊断, 分子标志物

Abstract: Objective To provide a new approach for the early diagnosis of pancreatic cancer by establishing and validating a combined diagnostic model for pancreatic cancer based on the methylation of the ataxia telangiectasia mutated(ATM)gene and clinical test indicators using the random forest algorithm. Methods Retrospectively, 118 specimens of peripheral blood mononuclear cells(PBMCs)from pancreatic cancer patients(pancreatic cancer group)and 73 specimens from healthy controls(healthy control group)were collected and their clinical test results were recorded. They were divided into discovery set, training set and validation set. In the discovery set, 935K methylation chip was used to analyze the differentially methylated points(DMPs)of PBMCs samples from both groups. In the training set and validation set samples, pyrosequencing was used to validate the candidate DMPs. In the training set, random forest algorithm was used for variable selection and to construct a combined diagnostic model. The diagnostic efficacy of the model in pancreatic cancer at different stages and in patients with negative carbohydrate antigen 19-9(CA19-9)was evaluated in the validation set using the receiver operating characteristic(ROC)curve. Results The results of the DNA methylation beadchip indicated that, with the screening condition of |Δβ|≥0.1 and P<0.01, 132 differentially methylated points(DMPs)were obtained. Among them, the methylation level of the ATM gene DMPs in PBMCs of the pancreatic cancer group was significantly higher than that of the healthy control group, and it could distinguish the pancreatic cancer group from the healthy control group(AUC=0.871, P<0.001). The pyrosequencing results further indicated that the ATM gene DMPs in PBMCs of the pancreatic cancer group was in a high-methylation level. Based on the variable selection of the random forest algorithm, three variables, ATM gene DMP, CA19-9, and albumin(ALB), were obtained. In the training set and validation set, the expression level of CA19-9 was significantly increased in the pancreatic cancer group(P<0.001), and the expression level of ALB was significantly decreased(P<0.001). Using the expression levels of the above three variables as features, the combined diagnostic model("AmCA")constructed by random forest in the training set had an AUC of 0.992(95%CI: 0.952-1.000)for pancreatic cancer diagnosis. The AUC of the model in the validation set was 0.982(95%CI: 0.895-1.000), which was superior to the AUC value of CA19-9 alone(0.840, 95%CI: 0.705-0.930); the model had good diagnostic efficacy for early-stage pancreatic cancer, with AUC values of 1.000(95%CI: 0.863-1.000)and 0.979(95%CI: 0.840-1.000)for stage I and stage II pancreatic cancer, respectively. The AUC of the model for diagnosing CA19-9-negative pancreatic cancer patients was 0.751(95%CI: 0.639-0.843), with a sensitivity of 52.2% and a specificity of 98.1%. Conclusion The ATM gene is hypermethylated in PBMCs of pancreatic cancer patients. Characterized by ATM hypermethylation,high CA19-9 and low ALB levels,the combined diagnostic model built with the random forest algorithm holds great clinical value for early pancreatic cancer diagnosis,and can make up for the diagnostic deficiency of the conventional biomarker CA19-9.

Key words: Pancreatic cancer, Peripheral blood mononuclear cells, DNA methylation, Early diagnosis, Molecular marker

中图分类号: 

  • R735.9
[1] 国家卫生健康委办公厅. 胰腺癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(5): 1006-1015.
[2] 中华医学会肿瘤学分会早诊早治学组.中华医学会肿瘤学分会胰腺癌早诊早治专家共识[J]. 临床肝胆病杂志, 2020, 36(12): 2675-2680. Early Diagnosis and Treatment Group,the Oncology Committee of Chinese Medical Association. Expert consensus of Oncology Committee of Chinese Medical Association in early diagnosis and treatment of pancreatic cancer[J]. Journal of Clinical Hepatology, 2020, 36(12): 2675-2680.
[3] 中国医师协会临床精准医疗专业委员会,中国抗癌协会肿瘤胰腺病学专业委员会.早期胰腺癌分子诊断专家共识(2023年版)[J].临床肝胆病杂志, 2024, 40(3): 473-477. Professional Committee on Clinical Precision Medicine, Chinese Medical Doctor Association, The Society of Pancreas Cancer, Chinese Anti-Cancer Association. Expert consensus on the molecular diagnosis of early-stage pancreatic cancer(2023 edition)[J]. Journal of Clinical Hepatology, 2024, 40(3): 473-477.
[4] Zhang L, Sanagapalli S, Stoita A. Challenges in diagnosis of pancreatic cancer[J]. World J Gastroenterol, 2018, 24(19): 2047-2060.
[5] Müller MF, Meyenberger C, Bertschinger P, et al. Pancreatic tumors: evaluation with endoscopic US, CT, and MR imaging[J]. Radiology, 1994, 190(3): 745-751.
[6] Bestari MB, Joewono IR, Syam AF. A quest for survival: a review of the early biomarkers of pancreatic cancer and the most effective approaches at present[J]. Biomolecules, 2024, 14(3): 364.
[7] 中国抗癌协会肿瘤标志专业委员会.肿瘤DNA甲基化标志物检测及临床应用专家共识(2024版)[J].中国癌症防治杂志, 2024, 16(2): 129-143.
[8] Li YZ, Fan ZY, Meng YF, et al. Blood-based DNA methylation signatures in cancer: a systematic review[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2023, 1869(1): 166583.
[9] Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging[J]. CA Cancer J Clin, 2017, 67(2): 93-99.
[10] 黄攀丝. KCTD8基因在胰腺癌中的表观遗传调控及功能机制研究[D]. 新乡: 新乡医学院, 2023.
[11] 张帆, 张美英, 高嫒嫒, 等. LRRTM1基因甲基化是胰腺癌的潜在诊断和预后标志物[J]. 胃肠病学和肝病学杂志, 2024, 33(5): 585-589. ZHANG Fan, ZHANG Meiying, GAO Aiai, et al. LRRTM1 gene methylation is a potential diagnostic and prognostic marker of pancreatic cancer[J]. Chinese Journal of Gastroenterology and Hepatology, 2024, 33(5): 585-589.
[12] 辛万鹏. 二代测序技术检测ctDNA抑癌基因甲基化在胰腺癌诊治中的应用价值[D]. 南昌: 南昌大学, 2022.
[13] Wu H, Guo S, Liu X, et al. Noninvasive detection of pancreatic ductal adenocarcinoma using the methylation signature of circulating tumour DNA[J]. BMC Med, 2022, 20(1): 458.
[14] Ben-Ami R, Wang QL, Zhang J, et al. Protein biomarkers and alternatively methylated cell-free DNA detect early stage pancreatic cancer[J]. Gut, 2024, 73(4): 639-648.
[15] Anagnostou V, Velculescu VE. Pushing the boundaries of liquid biopsies for early precision intervention[J]. Cancer Discov, 2024, 14(4): 615-619.
[16] 王金, 蒋慧, 郑建明. 循环肿瘤DNA在胰腺癌诊疗中的应用及前景[J]. 中华胰腺病杂志, 2022, 22(2): 152-155.
[17] Zhang YH, Zhou XR, Zhong Y, et al. Pan-cancer scRNA-seq analysis reveals immunological and diagnostic significance of the peripheral blood mononuclear cells[J]. Hum Mol Genet, 2024, 33(4): 342-354.
[18] Cele snik H, Poto cnik U. Peripheral blood transcriptome in breast cancer patients as a source of less invasive immune biomarkers for personalized medicine, and implications for triple negative breast cancer[J]. Cancers(Basel), 2022,14(3): 591.
[19] Xue J, Yang S, Zhang SS, et al. Deciphering the multifaceted immune landscape of unresectable primary liver cancer to predict immunotherapy response[J]. Adv Sci(Weinh), 2024, 11(47): e2309631.
[20] Ran X, Zheng J, Chen L, et al. Single-cell transcriptomics reveals the heterogeneity of the immune landscape of IDH-wild-type high-grade gliomas[J]. Cancer Immunol Res, 2024, 12(2): 232-246.
[21] 王景. 基于PBMC DNA甲基化的多位点联合诊断模型在胃癌早期诊断中的应用研究[D]. 济南: 山东大学, 2022.
[22] 刘士标, 张淑君, 李培龙, 等. cg20657709位点甲基化对肺腺癌早期诊断的初步探讨[J]. 山东大学学报(医学版), 2023, 61(4): 18-25. LIU Shibiao, ZHANG Shujun, LI Peilong, et al. The cg20657709 site methylation in the early detection of lung adenocarcinoma[J]. Journal of Shandong University(Health Science), 2023, 61(4):18-25.
[23] Xie Y, Li P, Sun D, et al. DNA methylation-based testing in peripheral blood mononuclear cells enables accurate and early detection of colorectal cancer[J]. Cancer Res, 2023, 83(21): 3636-3649.
[24] Wang T, Li P, Qi Q, et al. A multiplex blood-based assay targeting DNA methylation in PBMCs enables early detection of breast cancer[J]. Nat Commun, 2023, 14(1): 4724.
[25] Armstrong SA, Schultz CW, Azimi-Sadjadi A, et al. ATM dysfunction in pancreatic adenocarcinoma and associated therapeutic implications[J]. Mol Cancer Ther, 2019, 18(11): 1899-1908.
[26] Yin L, Wei J, Lu Z, et al. Prevalence of germline sequence variations among patients with pancreatic cancer in China[J]. JAMA Netw Open, 2022, 5(2): e2148721.
[27] Hsu FC, Roberts NJ, Childs E, et al. Risk of pancreatic cancer among individuals with pathogenic variants in the ATM gene[J]. JAMA Oncol, 2021, 7(11): 1664-1668.
[28] Park W, OConnor CA, Bandlamudi C, et al. Clinico-genomic characterization of ATM and HRD in pancreas cancer: application for practice[J]. Clin Cancer Res, 2022, 28(21): 4782-4792.
[29] Begam N, Jamil K, Raju SG. Promoter hypermethylation of the ATM gene as a novel biomarker for breast cancer[J]. Asian Pac J Cancer Prev, 2017, 18(11): 3003-3009.
[30] Tang ML, Gasser S. ATM activation mediates anticancer immunosurveillance by natural killer and T cells[J]. Oncoimmunology, 2013, 2(6): e24438.
[31] Roest C, Yakar D, Rener Sitar DI, et al. Multimodal AI combining clinical and imaging inputs improves prostate cancer detection[J]. Invest Radiol, 2024, 59(12): 854-860.
[32] Yang H, Liu J, Yang N, et al. Enhancing metastatic colorectal cancer prediction through advanced feature selection and machine learning techniques[J]. Int Immunopharmacol, 2024, 142(Pt A): 113033. doi: 10.1016/j.intimp.2024.113033
[33] Zhang P, Zou M, Wen X, et al. Development of serum parameters panels for the early detection of pancreatic cancer[J]. Int J Cancer, 2014, 134(11): 2646-2655.
[34] Liu C, Deng S, Jin K, et al. Lewis antigen-negative pancreatic cancer: an aggressive subgroup[J]. Int J Oncol, 2020, 56(4): 900-908.
[35] 杨金收, 许瑞源, 王程程, 等. 胰腺癌的早期筛查与诊断策略[J]. 癌症, 2023, 42(9): 453-472.
[1] 赵汉卿,周新睿,李子建,唐兴. 循环肿瘤细胞联合血清学检测在非小细胞肺癌中的应用[J]. 山东大学学报 (医学版), 2025, 63(5): 79-85.
[2] 陈映均,刘同刚. 综合生物信息学分析鉴定乙型肝炎病毒相关肝细胞癌中异常甲基化修饰的差异表达基因[J]. 山东大学学报 (医学版), 2023, 61(9): 101-117.
[3] 刘士标,张淑君,李培龙,杜鲁涛,王传新. cg20657709位点甲基化对肺腺癌早期诊断的初步探讨[J]. 山东大学学报 (医学版), 2023, 61(4): 18-25.
[4] 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34.
[5] 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12.
[6] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[7] 董亚琳,巩武贤,胡锦卓,李亚妮,王锡明. 紧张部内陷袋胆脂瘤高分辨率CT征象分析[J]. 山东大学学报 (医学版), 2022, 60(12): 82-87.
[8] 李雁儒,李娟,李培龙,杜鲁涛,王传新. 胰腺癌不同进展期血清外泌体蛋白质组学分析[J]. 山东大学学报 (医学版), 2022, 60(10): 33-41.
[9] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[10] 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39.
[11] 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55.
[12] 夏丹丹,王惠宇,许隽颖,刘超英,王润洁. 小肠神经内分泌肿瘤2例并文献回顾[J]. 山东大学学报 (医学版), 2020, 58(1): 87-90.
[13] 黄金献,李栋,李聪,时庆,鞠秀丽. 三维和二维培养的脐带间充质干细胞DNA甲基化水平比较[J]. 山东大学学报 (医学版), 2019, 57(11): 1-8.
[14] 中国医师协会检验医师分会肺癌检验医学专家委员会. 肺癌实验室诊断专家共识[J]. 山东大学学报 (医学版), 2018, 56(10): 9-17.
[15] 王红阳. 精准医疗时代的肿瘤生物标志物发展[J]. 山东大学学报 (医学版), 2018, 56(10): 1-2.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!