您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (1): 38-47.doi: 10.6040/j.issn.1671-7554.0.2023.0435

• 临床医学 • 上一篇    

基于机器学习的胃肠道疾病舌诊模型构建

张景慧1,王娟2,赵玉洁3,段淼1,刘毅然4,林敏娟1,谯旭4,李真1,左秀丽1   

  • 发布日期:2024-02-02
  • 通讯作者: 左秀丽. E-mail:zuoxiuli@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(82070551)

Construction of a machine learning-based tongue diagnosis model for gastrointestinal diseases

ZHANG Jinghui1, WANG Juan2, ZHAO Yujie3, DUAN Miao1, LIU Yiran4, LIN Minjuan1, QIAO Xu4, LI Zhen1, ZUO Xiuli1   

  1. 1. Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Hospital Development Center of Qingdao Municipal Health Commission, Qingdao 266001, Shandong, China;
    3. Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China;
    4. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2024-02-02

摘要: 目的 构建基于机器学习的胃肠道疾病舌诊模型,以寻求更加方便、经济的方式实现对常见胃肠道疾病的非侵入性诊断。 方法 前瞻性收集接受电子内镜检查的948名受试者的舌象图片,经过质量筛选,最终获得符合应用标准的3 140张图片构成本研究使用的舌象数据集。对原始舌象数据进行预处理、特征提取与模式识别,在传统机器学习方法的基础之上,提出一种从特征融合和决策融合两个方面实现信息融合的方法,以此构建以舌象特征为输入的胃肠道疾病舌诊模型。 结果 本研究构建的基于舌象的信息融合诊断模型的曲线下面积(area under the curve, AUC)为0.808,高于单一手工特征(AUC=0.769)和深度特征(AUC=0.779)模型;使用BSFCM混合采样方法进行样本增强提高了该模型对幽门螺杆菌(Helicobacter pylori, H.pylori)感染(AUC=0.816)、胆汁反流(AUC=0.829)、反流性食管炎(AUC=0.800)、胃糜烂(AUC=0.833)和十二指肠糜烂(AUC=0.818)的分类性能。 结论 本研究构建的基于机器学习的智能舌诊模型对多种胃肠道疾病具有较高的区分度,或为胃肠道疾病的诊断与筛查提供一种新的、有价值的思路与方法。

关键词: 人工智能, 舌象, 胃肠道疾病, 机器学习, 舌诊模型

Abstract: Objective To construct a machine learning(ML)-based tongue diagnostic model for the diagnosis of gastrointestinal diseases so as to realize the non-invasive auxiliary diagnosis of common gastrointestinal diseases in a more convenient and faster way. Methods Tongue images of 948 subjects who underwent electronic endoscopy were prospectively collected. After quality screening, 3,140 images that met the application criteria were finally obtained to constitute the tongue image data set, which underwent preprocessing, feature extraction and pattern recognition. On the basis of traditional machine learning methods, a method to realize information fusion in terms of feature fusion and decision fusion was proposed, and a tongue diagnosis model of gastrointestinal diseases was constructed. Results The area under the curve(AUC)of the model was 0.808, which was higher than that of the single handcrafted feature(AUC=0.769)and deep feature(AUC=0.779)models. Sample enhancement using the BSFCM hybrid sampling method improved the models performance for Helicobacter pylori(H. pylori) infection(AUC=0.816), bile reflux(AUC=0.829), reflux esophagitis(AUC=0.800), gastric erosion(AUC=0.833)and duodenal erosion(AUC=0.818). Conclusion The intelligent tongue diagnostic model based on ML constructed in this study shows a high degree of differentiation for a variety of gastrointestinal diseases, and may provide a new and valuable idea and method for the diagnosis and screening of gastrointestinal diseases.

Key words: Artificial intelligence, Tongue image, Gastrointestinal diseases, Machine learning, Tongue diagnosis model

中图分类号: 

  • R241.25
[1] Wang YC, Huang YT, Chase RC, et al. Global burden of digestive diseases: a systematic analysis of the global burden of diseases study, 1990 to 2019[J]. Gastroenterology, 2023, 165(3): 773-783.
[2] Wang WY, Zhou H, Wang YF, et al. Current policies and measures on the development of traditional Chinese medicine in China[J].Pharmacol Res,2021,163:105187. doi:10.1016/j.phrs.2020.105187.
[3] 王庆盛, 高慧, 许朝霞, 等. 冠心病及其不同合并病患者的舌诊参数特征分析[J]. 中华中医药杂志, 2022, 37(3): 1316-1320. WANG Qingsheng, GAO Hui, XU Zhaoxia, et al. Analysis of tongue diagnostic parameters in patients with coronary heart disease and its different complications[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2022, 37(3): 1316-1320.
[4] 于然, 娄彦妮, 梁婉娴, 等. 基于食管癌高发区人群筛查探索反流性食管炎及Barrett食管的舌象转化规律[J]. 中医杂志, 2021, 62(9): 782-788. YU Ran, LOU Yanni, LIANG Wanxian, et al. The change characteristics of tongue manifestation of reflux esophagitis and barretts esophagus based on an esophageal carcinoma screening study in high-risk areas of China[J]. Journal of Traditional Chinese Medicine, 2021, 62(9): 782-788.
[5] Wu TC, Lu CN, Hu WL, et al. Tongue diagnosis indices for gastroesophageal reflux disease: a cross-sectional, case-controlled observational study[J]. Medicine, 2020, 99(29): e20471. doi:10.1097/MD.0000000000020471.
[6] Hou B, Zeng Y, Ling H, et al. Correlation between helicobacter pylori infection and tongue manifestations: a meta-analysis[J]. Digital Chinese Medicine, 2018, 1(2): 155-163.
[7] Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023[J]. N Engl J Med, 2023, 388(13): 1201-1208.
[8] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. doi:10.1016/j.media.2017.07.005.
[9] Fan SY, Chen B, Zhang XR, et al. Machine learning algorithms in classifying TCM tongue features in diabetes mellitus and symptoms of gastric disease[J]. Eur J Integr Med, 2021, 43: 101288. doi:10.1016/j.eujim.2021.101288.
[10] Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
[11] Sun TG, Mao L, Chai ZK, et al. Predicting the proliferation of tongue cancer with artificial intelligence in contrast-enhanced CT[J]. Front Oncol, 2022,12: 841262. doi:10.3389/fonc.2022.841262.
[12] Yuan L, Yang L, Zhang SC, et al. Development of a tongue image-based machine learning tool for the diagnosis of gastric cancer: a prospective multicentre clinical cohort study[J]. E Clinical Medicine, 2023, 57: 101834. doi:10.1016/j.eclinm.2023.101834.
[13] Li MY, Zhu DJ, Xu W, et al. Application of U-net with global convolution network module in computer-aided tongue diagnosis[J]. J Healthc Eng, 2021: 5853128. doi:10.1155/2021/5853128.
[14] Ma CZ, Zhang P, Du SY, et al. Construction of tongue image-based machine learning model for screening patients with gastric precancerous lesions[J]. J Pers Med, 2023, 13(2): 271. doi:10.3390/jpm13020271.
[15] Wang XZ, Luo SY, Tian GH, et al. Deep learning based tongue prickles detection in traditional Chinese medicine[J]. Evid Based Complement Alternat Med, 2022: 5899975. doi:10.1155/2022/5899975.
[16] 姜楠, 袁莉, 汪莉, 等. 初诊胃癌患者舌象特征的客观化研究[J]. 中华中医药杂志, 2023, 38(1): 427-433. JIANG Nan, YUAN Li, WANG Li, et al. Objective study on tongue features of newly diagnosed gastric cancer patients[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2023, 38(1): 427-433.
[17] Jiang T, Guo XJ, Tu LP, et al. Application of computer tongue image analysis technology in the diagnosis of NAFLD[J]. Comput Biol Med, 2021,135:104622. doi:10.1016/j.compbiomed.2021.104622.
[18] Li J, Chen QG, Hu XJ, et al. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques[J]. Int J Med Inform, 2021, 149: 104429. doi:10.1016/j.ijmedinf.2021.104429.
[19] Olaf R, Philipp F, Thomas B. U-Net: convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 2015: 234-241.
[20] Mohanaiah P, Sathyanarayana P, GuruKumar L, et al. Image texture feature extraction using GLCM approach[J]. In J Sci Res Publ, 2013, 3(5): 1-5.
[21] Kaplan K, Kaya Y, Kuncan M, et al. Brain tumor classification using modified local binary patterns(LBP)feature extraction methods[J]. Med Hypotheses, 2020, 139: 109696. doi:10.1016/j.mehy.2020.109696.
[22] Arivazhagan S, Ganesan L, Priyal SP. Texture classification using Gabor wavelets based rotation invariant features[J]. Pattern Recognit Lett, 2006, 27(16): 1976-1982.
[23] Hu MK. Visual pattern recognition by moment invariants[J]. IRE Trans Inf Theory, 1962, 8(2): 179-187.
[24] Liu YR, Qiao X, Gao R. Plankton classification on imbalanced dataset via hybrid resample method with LightBGM[C]. 2021 6th International Conference on Image, Vision and Computing(ICIVC). July 23-25, 2021, Qingdao, China. IEEE,2021:191-195. doi:10.1109/ICIVC52351.2021.9526988.
[25] Džeroski S, Ženko B. Is combining classifiers with stacking better than selecting the best one?[J]. Mach Learn, 2004, 54(3): 255-273.
[26] Malfertheiner P, Camargo MC, El-Omar E, et al. Helicobacter pylori infection[J]. Nat Rev Dis Primers, 2023, 9: 19. doi:10.1038/s41572-023-00431-8.
[27] Zhang LY, Zhang J, Li D, et al. Bile reflux is an independent risk factor for precancerous gastric lesions and gastric cancer: an observational cross-sectional study[J]. J Dig Dis, 2021, 22(5): 282-290.
[28] Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68:1-4. doi:10.1016/j.mri.2019.12.006.
[29] You YJ, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery[J]. Signal Transduct Target Ther, 2022, 7(1): 156. doi:10.1038/s41392-022-00994-0.
[30] Lin S, Li ZG, Fu BW, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo[J]. Eur Heart J, 2020, 41(46): 4400-4411.
[31] Liang B, Li R, Lu J, et al. Tongue diagnostic parameters-based diagnostic signature in coronary artery disease patients with clopidogrel resistance after percutaneous coronary intervention[J]. Explore, 2023, 19(4): 528-535.
[32] Zhang NN, Jiang ZX, Li JX, et al. Multiple color representation and fusion for diabetes mellitus diagnosis based on back tongue images[J]. Comput Biol Med, 2023, 155: 106652. doi:10.1016/j.compbiomed.2023.106652.
[33] Zhang Q, Wen J, Zhou JH, et al. Missing-view completion for fatty liver disease detection[J]. Comput Biol Med, 2022, 150: 106097. doi:10.1016/j.compbiomed.2022.106097.
[34] Shi YL, Guo DD, Chun Y, et al. A lung cancer risk warning model based on tongue images[J]. Front Physiol, 2023, 14: 1154294. doi:10.3389/fphys.2023.1154294.
[35] Ma JJ, Wen GH, Wang CJ, et al. Complexity perception classification method for tongue constitution recognition[J]. Artif Intell Med, 2019, 96: 123-133. doi:10.1016/j.artmed.2019.03.008.
[36] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. doi:10.1109/CVPR.2016.90.
[37] Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
[1] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[2] 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133.
[3] 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45.
[4] 刘亚军,郎昭,郭安忆,刘文勇. 骨科冲击波治疗的智能化发展现状及趋势分析[J]. 山东大学学报 (医学版), 2023, 61(3): 7-13.
[5] 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6.
[6] 朱正阳,沈靖菲,陈思璇,叶梅萍,杨惠泉,周佳南,梁雪,张鑫,张冰. 磁敏感加权成像不同影像组学模型预测胶质瘤IDH基因突变[J]. 山东大学学报 (医学版), 2023, 61(12): 44-50.
[7] 赵古月,尚靳,侯阳. 人工智能在冠状动脉CT血管成像的应用进展[J]. 山东大学学报 (医学版), 2023, 61(12): 30-35.
[8] 李骁,孙志远,张龙江. 影像人工智能在肺炎筛查、诊断及预测领域的应用研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 13-20.
[9] 徐子良,郑敏文. 影像人工智能在医学领域的时代创新与挑战[J]. 山东大学学报 (医学版), 2023, 61(12): 7-12, 20.
[10] 聂佩,王锡明. 人工智能在心肌影像应用中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 1-6.
[11] 巨艳丽,王丽华,成芳,黄凤艳,陈学禹,贾红英. 基于机器学习构建放射性碘治疗疗效的预测模型[J]. 山东大学学报 (医学版), 2023, 61(1): 94-99.
[12] 况利,徐小明,曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报 (医学版), 2022, 60(4): 10-16.
[13] 姜震,孙静,邹雯,王唱唱,高琦. 基于两种机器学习算法的双相情感障碍患者自杀行为影响因素模型比较研究[J]. 山东大学学报 (医学版), 2022, 60(1): 101-108.
[14] 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96.
[15] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!