山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (2): 78-87.doi: 10.6040/j.issn.1671-7554.0.2022.1273
董相君1,李娟1,孔雪1,李培龙1,赵文静2,梁怡然3,王丽丽4,杜鲁涛1,王传新1
DONG Xiangjun1, LI Juan1, KONG Xue1, LI Peilong1, ZHAO Wenjing2, LIANG Yiran3, WANG Lili4, DU Lutao1, WANG Chuanxin1
摘要: 目的 探讨环状RNA(circRNA)hsa_circ_0008591在乳腺癌中的表达及其对乳腺癌细胞生物学行为的影响。 方法 运用高通量芯片数据分析筛选在乳腺癌组织中差异表达的circRNAs,确定hsa_circ_0008591为研究对象,并通过Sanger测序、核糖核酸酶R(RNaseR)处理等对其进行表征。利用实时荧光定量PCR(qRT-PCR)检测hsa_circ_0008591在乳腺癌组织和细胞中的表达;进一步将质粒或小干扰RNA(siRNA)转染至乳腺癌细胞,采用实时无标记细胞分析技术(RTCA)、CCK-8增殖实验、EdU增殖实验和平板克隆形成实验检测hsa_circ_0008591对细胞增殖能力的影响。运用TargetScan等数据库预测互相作用的微小RNA(miRNA)和蛋白,同时进行功能富集分析;并运用Cytoscape软件绘制竞争性内源RNA(ceRNA)调控网络。 结果 与癌旁组织比较,hsa_circ_0008591在乳腺癌组织中呈低表达(P=0.007 6);与人正常乳腺上皮细胞比较,hsa_circ_0008591在6种乳腺癌细胞株中的表达水平明显下调(P<0.001)。体外功能实验结果表明,过表达hsa_circ_0008591可抑制MDA-MB-231(PRTCA<0.001,PEdU=0.000 6,P克隆=0.001 0)、MCF-7(PRTCA<0.001,PEdU=0.001 7,P克隆<0.001)细胞的增殖能力,而敲减hsa_circ_0008591可促进SK-BR-3(Pcck-8<0.001,PEdU<0.001,P克隆=0.003 4)细胞的增殖能力。下游靶点和通路富集分析结果显示,hsa_circ_0008591可能通过ceRNA机制或与RNA结合蛋白(RBP)相互作用抑制乳腺癌的进展。 结论 circRNA hsa_circ_0008591可抑制乳腺癌细胞增殖,有望成为乳腺癌治疗的有效干预靶点。
中图分类号:
[1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33. [2] Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. [3] 张雪, 董晓平, 管雅喆, 等. 女性乳腺癌流行病学趋势及危险因素研究进展[J]. 肿瘤防治研究, 2021, 48(1): 87-92. ZHANG Xue, DONG Xiaoping, GUAN Yazhe, et al. Research progress on epidemiological trend and risk factors of female breast cancer [J]. Cancer Research on Prevention and Treatment, 2021, 48(1): 87-92. [4] 瞿蕾, 唐文静, 吴佳皓. 乳腺癌患者发病的影响因素分析[J]. 中国妇幼健康研究, 2017, 28(5): 505-509. QU Lei, TANG Wenjing, WU Jiahao. Influence factors of patients with breast cancer [J]. Chinese Journal of Woman and Child Health, 2017, 28(5): 505-509. [5] Dinakar YH, Kumar H, Mudavath SL, et al. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors [J]. Life Sci, 2022, 309: 120996. doi: 10.1016/j.lfs.2022.120996. [6] Hu L, Su L, Cheng H, et al. Single-cell RNA sequencing reveals the cellular origin and evolution of breast cancer in BRCA1 mutation carriers [J]. Cancer Res, 2021, 81(10): 2600-2611. [7] Chiang KC, Yeh CN, Chen HY, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and ncreases cell growth in vitro and in vivo [J]. Drug Des Devel Ther, 2015, 9: 4631-4638. doi: 10.2147/DDDT.S86184. [8] Keren L, Bosse M, Marquez D, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging [J]. Cell, 2018, 174(6): 1373-1387.e19. doi: 10.1016/j.cell.2018.08.039. [9] Saw PE, Xu X, Chen J, et al. Non-coding RNAs: the new central dogma of cancer biology [J]. Sci China Life Sci, 2021, 64(1): 22-50. [10] Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer [J]. Nat Rev Cancer, 2018, 18(1): 5-18. [11] Chen J, Yang J, Fei X, et al. CircRNA ciRS-7: a novel oncogene in multiple cancers [J]. Int J Biol Sci, 2021, 17(1): 379-389. [12] Wang X, Fang L. Advances in circular RNAs and their roles in breast cancer [J]. J Exp Clin Cancer Res, 2018, 37(1): 206. doi: 10.1186/s13046-018-0870-8. [13] Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology [J]. Nat Rev Clin Oncol, 2022, 19(3): 188-206. [14] Pan X, Fang Y, Li X, et al. RBPsuite: RNA-protein binding sites prediction suite based on deep learning [J]. BMC Genomics, 2020, 21(1): 884. doi: 10.1186/s12864-020-07291-6. [15] Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs [J]. RNA Biol, 2016, 13(1): 34-42. [16] Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. [17] Zhang M, Bai X, Zeng X, et al. circRNA-miRNA-mRNA in breast cancer [J]. Clin Chim Acta, 2021, 523: 120-130. doi: 10.1016/j.cca.2021.09.013. [18] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene [J]. Mol Cancer, 2020, 19(1): 128. doi: 10.1186/s12943-020-01246-x. [19] Tang L, Jiang B, Zhu H, et al. The Biogenesis and functions of circRNAs and their roles in breast cancer [J]. Front Oncol, 2021, 11: 605988. doi: 10.3389/fonc.2021.605988. [20] Xu JZ, Shao CC, Wang XJ, et al. circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis [J]. Cell Death Dis, 2019, 10(3): 175. doi: 10.1038/s41419-019-1382-y. [21] Misir S, Hepokur C, Aliyazicioglu Y, et al. Circular RNAs serve as miRNA sponges in breast cancer [J]. Breast Cancer, 2020, 27(6): 1048-1057. [22] Li D, Zhang J, Li J. Role of miRNA sponges in hepatocellular carcinoma [J]. Clin Chim Acta, 2020, 500: 10-19. doi: 10.1016/j.cca.2019.09.013. [23] Li X, Feng Y, Yang B, et al. A novel circular RNA, hsa_circ_0030998 suppresses lung cancer tumorigenesis and Taxol resistance by sponging miR-558 [J]. Mol Oncol, 2021, 15(8): 2235-2248. [24] Wang F, Wang X, Li J, et al. CircNOL10 suppresses breast cancer progression by sponging miR-767-5p to regulate SOCS2/JAK/STAT signaling [J]. J Biomed Sci, 2021, 28(1): 4. doi: 10.1186/s12929-020-00697-0. [25] Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins [J]. Mol Cancer, 2020, 19(1): 172. doi: 10.1186/s12943-020-01286-3. [26] Li J, Sun D, Pu W, et al. Circular RNAs in cancer: biogenesis, function, and clinical significance [J]. Trends Cancer, 2020, 6(4): 319-336. [27] Yang R, Chen H, Xing L, et al. Hypoxia-induced circWSB1 promotes breast cancer progression through destabilizing p53 by interacting with USP10 [J]. Mol Cancer, 2022, 21(1): 88. doi: 10.1186/s12943-022-01567-z. [28] Kalmykova S, Kalinina M, Denisov S, et al. Conserved long-range base pairings are associated with pre-mRNA processing of human genes [J]. Nat Commun, 2021, 12(1): 2300. doi: 10.1038/s41467-021-22549-7. [29] Kanellis DC, Espinoza JA, Zisi A, et al. The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output [J]. Sci Adv, 2021, 7(32): eabf7561. doi: 10.1126/sciadv.abf7561. [30] Wei Y, Lu C, Zhou P, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling [J]. Neuro Oncol, 2021, 23(4): 611-624. [31] Yang M, Hu H, Wu S, et al. EIF4A3-regulated circ_0087429 can reverse EMT and inhibit the progression of cervical cancer via miR-5003-3p-dependent upregulation of OGN expression [J]. J Exp Clin Cancer Res, 2022, 41(1): 165. doi: 10.1186/s13046-022-02368-4. [32] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3 [J]. Mol Ther Nucleic Acids, 2021, 26: 122-134. doi: 10.1016/j.omtn.2021.07.003. [33] Lu C, Rong D, Hui B, et al. CircETFA upregulates CCL5 by sponging miR-612 and recruiting EIF4A3 to promote hepatocellular carcinoma [J]. Cell Death Discov, 2021, 7(1): 321. doi: 10.1038/s41420-021-00710-x. |
[1] | 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-. |
[2] | 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26. |
[3] | 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46. |
[4] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[5] | 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84. |
[6] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[7] | 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5. |
[8] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[9] | 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29. |
[10] | 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26. |
[11] | 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120. |
[12] | 周亚杰,王斐,于理想,余之刚. 女性乳腺癌保乳手术决策相关因素[J]. 山东大学学报 (医学版), 2022, 60(12): 1-6. |
[13] | 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16. |
[14] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[15] | 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139. |
|