您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (2): 78-87.doi: 10.6040/j.issn.1671-7554.0.2022.1273

• 临床医学 • 上一篇    下一篇

环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响

董相君1,李娟1,孔雪1,李培龙1,赵文静2,梁怡然3,王丽丽4,杜鲁涛1,王传新1   

  1. 1.山东大学第二医院检验医学中心, 山东 济南 250033;2.山东大学齐鲁医院科研处生物样本资源库, 山东 济南 250012;3.山东大学齐鲁医院乳腺外科, 山东 济南 250012;4.山东大学齐鲁医院检验医学中心, 山东 济南 250012
  • 发布日期:2023-02-17
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(82002229);山东省自然科学基金(ZR2019PH074)

Effects of circular RNA hsa_circ_0008591 on tumor biological behavior of breast cancer cells

DONG Xiangjun1, LI Juan1, KONG Xue1, LI Peilong1, ZHAO Wenjing2, LIANG Yiran3, WANG Lili4, DU Lutao1, WANG Chuanxin1   

  1. 1. Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China;
    2. Pathology Tissue Bank, Department of Scientific Research, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    3. Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    4. Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2023-02-17

摘要: 目的 探讨环状RNA(circRNA)hsa_circ_0008591在乳腺癌中的表达及其对乳腺癌细胞生物学行为的影响。 方法 运用高通量芯片数据分析筛选在乳腺癌组织中差异表达的circRNAs,确定hsa_circ_0008591为研究对象,并通过Sanger测序、核糖核酸酶R(RNaseR)处理等对其进行表征。利用实时荧光定量PCR(qRT-PCR)检测hsa_circ_0008591在乳腺癌组织和细胞中的表达;进一步将质粒或小干扰RNA(siRNA)转染至乳腺癌细胞,采用实时无标记细胞分析技术(RTCA)、CCK-8增殖实验、EdU增殖实验和平板克隆形成实验检测hsa_circ_0008591对细胞增殖能力的影响。运用TargetScan等数据库预测互相作用的微小RNA(miRNA)和蛋白,同时进行功能富集分析;并运用Cytoscape软件绘制竞争性内源RNA(ceRNA)调控网络。 结果 与癌旁组织比较,hsa_circ_0008591在乳腺癌组织中呈低表达(P=0.007 6);与人正常乳腺上皮细胞比较,hsa_circ_0008591在6种乳腺癌细胞株中的表达水平明显下调(P<0.001)。体外功能实验结果表明,过表达hsa_circ_0008591可抑制MDA-MB-231(PRTCA<0.001,PEdU=0.000 6,P克隆=0.001 0)、MCF-7(PRTCA<0.001,PEdU=0.001 7,P克隆<0.001)细胞的增殖能力,而敲减hsa_circ_0008591可促进SK-BR-3(Pcck-8<0.001,PEdU<0.001,P克隆=0.003 4)细胞的增殖能力。下游靶点和通路富集分析结果显示,hsa_circ_0008591可能通过ceRNA机制或与RNA结合蛋白(RBP)相互作用抑制乳腺癌的进展。 结论 circRNA hsa_circ_0008591可抑制乳腺癌细胞增殖,有望成为乳腺癌治疗的有效干预靶点。

关键词: 环状RNA, Hsa_circ_0008591, 乳腺癌, 增殖, 生物学行为

Abstract: Objective To investigate the expression of circular RNA(circRNA)hsa_circ_0008591 and its effects on the biological behavior of breast cancer(BC)cells. Methods The differentially expressed circRNAs in BC tissues were screened using high-throughput circRNA microarray, and hsa_circ_0008591 was selected as a candidate, which was characterized by Sanger sequencing and ribonuclease R(RNaseR)treatment. Quantitative real-time PCR(qRT-PCR)was performed to detect the expression of hsa_circ_0008591 in BC tissues and cells. Furthermore, BC cells were transfected with plasmid or small interfering RNA(siRNA)and the effects of hsa_circ_0008591 on cell proliferation were detected with real-time cellular analysis(RTCA), cell counting kit-8(CCK-8)assay, 5-ethynyl-2'-deoxyuridine(EdU)assay, and colony formation assay. The interacting microRNAs(miRNAs)and proteins were predicted by databases such as TargetScan, and function enrichment analysis were performed. A regulatory network of ceRNA was constructed with Cytoscape software. Results Hsa_circ_0008591 was significantly downregulated in BC tissues(P=0.007 6). Compared with normal breast epithelial cells, six BC cell lines had a lower expression of hsa_circ_0008591(P<0.001). In vitro functional experiments showed that overexpression of hsa_circ_0008591 inhibited the proliferation of MDA-MB-231(PRTCA<0.001, PEdU=0.000 6, Pcolony=0.001 0)and MCF-7 cells(PRTCA<0.001, PEdU=0.001 7, Pcolony<0.001), while the knockdown of hsa_circ_0008591 promoted the proliferation of SK-BR-3 cells(PRTCA<0.001, PEdU<0.001, Pcolony=0.003 4). The downstream targets, gene ontology(GO)analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment indicated that hsa_circ_0008591 inhibited the progression of BC through ceRNA mechanism or interaction with RNA-binding protein(RBP). Conclusion Circular RNA hsa_circ_0008591 can inhibit the proliferation of BC cells and is expected to be an effective intervention target for the treatment of BC.

Key words: Circular RNA, Hsa_circ_0008591, Breast cancer, Proliferation, Biological behavior

中图分类号: 

  • R737.9
[1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[2] Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9.
[3] 张雪, 董晓平, 管雅喆, 等. 女性乳腺癌流行病学趋势及危险因素研究进展[J]. 肿瘤防治研究, 2021, 48(1): 87-92. ZHANG Xue, DONG Xiaoping, GUAN Yazhe, et al. Research progress on epidemiological trend and risk factors of female breast cancer [J]. Cancer Research on Prevention and Treatment, 2021, 48(1): 87-92.
[4] 瞿蕾, 唐文静, 吴佳皓. 乳腺癌患者发病的影响因素分析[J]. 中国妇幼健康研究, 2017, 28(5): 505-509. QU Lei, TANG Wenjing, WU Jiahao. Influence factors of patients with breast cancer [J]. Chinese Journal of Woman and Child Health, 2017, 28(5): 505-509.
[5] Dinakar YH, Kumar H, Mudavath SL, et al. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors [J]. Life Sci, 2022, 309: 120996. doi: 10.1016/j.lfs.2022.120996.
[6] Hu L, Su L, Cheng H, et al. Single-cell RNA sequencing reveals the cellular origin and evolution of breast cancer in BRCA1 mutation carriers [J]. Cancer Res, 2021, 81(10): 2600-2611.
[7] Chiang KC, Yeh CN, Chen HY, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and ncreases cell growth in vitro and in vivo [J]. Drug Des Devel Ther, 2015, 9: 4631-4638. doi: 10.2147/DDDT.S86184.
[8] Keren L, Bosse M, Marquez D, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging [J]. Cell, 2018, 174(6): 1373-1387.e19. doi: 10.1016/j.cell.2018.08.039.
[9] Saw PE, Xu X, Chen J, et al. Non-coding RNAs: the new central dogma of cancer biology [J]. Sci China Life Sci, 2021, 64(1): 22-50.
[10] Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer [J]. Nat Rev Cancer, 2018, 18(1): 5-18.
[11] Chen J, Yang J, Fei X, et al. CircRNA ciRS-7: a novel oncogene in multiple cancers [J]. Int J Biol Sci, 2021, 17(1): 379-389.
[12] Wang X, Fang L. Advances in circular RNAs and their roles in breast cancer [J]. J Exp Clin Cancer Res, 2018, 37(1): 206. doi: 10.1186/s13046-018-0870-8.
[13] Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology [J]. Nat Rev Clin Oncol, 2022, 19(3): 188-206.
[14] Pan X, Fang Y, Li X, et al. RBPsuite: RNA-protein binding sites prediction suite based on deep learning [J]. BMC Genomics, 2020, 21(1): 884. doi: 10.1186/s12864-020-07291-6.
[15] Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs [J]. RNA Biol, 2016, 13(1): 34-42.
[16] Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691.
[17] Zhang M, Bai X, Zeng X, et al. circRNA-miRNA-mRNA in breast cancer [J]. Clin Chim Acta, 2021, 523: 120-130. doi: 10.1016/j.cca.2021.09.013.
[18] Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene [J]. Mol Cancer, 2020, 19(1): 128. doi: 10.1186/s12943-020-01246-x.
[19] Tang L, Jiang B, Zhu H, et al. The Biogenesis and functions of circRNAs and their roles in breast cancer [J]. Front Oncol, 2021, 11: 605988. doi: 10.3389/fonc.2021.605988.
[20] Xu JZ, Shao CC, Wang XJ, et al. circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis [J]. Cell Death Dis, 2019, 10(3): 175. doi: 10.1038/s41419-019-1382-y.
[21] Misir S, Hepokur C, Aliyazicioglu Y, et al. Circular RNAs serve as miRNA sponges in breast cancer [J]. Breast Cancer, 2020, 27(6): 1048-1057.
[22] Li D, Zhang J, Li J. Role of miRNA sponges in hepatocellular carcinoma [J]. Clin Chim Acta, 2020, 500: 10-19. doi: 10.1016/j.cca.2019.09.013.
[23] Li X, Feng Y, Yang B, et al. A novel circular RNA, hsa_circ_0030998 suppresses lung cancer tumorigenesis and Taxol resistance by sponging miR-558 [J]. Mol Oncol, 2021, 15(8): 2235-2248.
[24] Wang F, Wang X, Li J, et al. CircNOL10 suppresses breast cancer progression by sponging miR-767-5p to regulate SOCS2/JAK/STAT signaling [J]. J Biomed Sci, 2021, 28(1): 4. doi: 10.1186/s12929-020-00697-0.
[25] Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins [J]. Mol Cancer, 2020, 19(1): 172. doi: 10.1186/s12943-020-01286-3.
[26] Li J, Sun D, Pu W, et al. Circular RNAs in cancer: biogenesis, function, and clinical significance [J]. Trends Cancer, 2020, 6(4): 319-336.
[27] Yang R, Chen H, Xing L, et al. Hypoxia-induced circWSB1 promotes breast cancer progression through destabilizing p53 by interacting with USP10 [J]. Mol Cancer, 2022, 21(1): 88. doi: 10.1186/s12943-022-01567-z.
[28] Kalmykova S, Kalinina M, Denisov S, et al. Conserved long-range base pairings are associated with pre-mRNA processing of human genes [J]. Nat Commun, 2021, 12(1): 2300. doi: 10.1038/s41467-021-22549-7.
[29] Kanellis DC, Espinoza JA, Zisi A, et al. The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output [J]. Sci Adv, 2021, 7(32): eabf7561. doi: 10.1126/sciadv.abf7561.
[30] Wei Y, Lu C, Zhou P, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling [J]. Neuro Oncol, 2021, 23(4): 611-624.
[31] Yang M, Hu H, Wu S, et al. EIF4A3-regulated circ_0087429 can reverse EMT and inhibit the progression of cervical cancer via miR-5003-3p-dependent upregulation of OGN expression [J]. J Exp Clin Cancer Res, 2022, 41(1): 165. doi: 10.1186/s13046-022-02368-4.
[32] Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3 [J]. Mol Ther Nucleic Acids, 2021, 26: 122-134. doi: 10.1016/j.omtn.2021.07.003.
[33] Lu C, Rong D, Hui B, et al. CircETFA upregulates CCL5 by sponging miR-612 and recruiting EIF4A3 to promote hepatocellular carcinoma [J]. Cell Death Discov, 2021, 7(1): 321. doi: 10.1038/s41420-021-00710-x.
[1] 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-.
[2] 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26.
[3] 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46.
[4] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[5] 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84.
[6] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[7] 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5.
[8] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[9] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[10] 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26.
[11] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[12] 周亚杰,王斐,于理想,余之刚. 女性乳腺癌保乳手术决策相关因素[J]. 山东大学学报 (医学版), 2022, 60(12): 1-6.
[13] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[14] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
[15] 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!