您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (2): 72-77.doi: 10.6040/j.issn.1671-7554.0.2022.1184

• 临床医学 • 上一篇    下一篇

老年人颈动脉狭窄与脑白质结构网络拓扑属性的相关性

王少虎1,牟鑫2,许程飞3,赵颖馨1,张华1   

  1. 1.山东第一医科大学(山东省医学科学院)临床与基础医学院(基础医学研究所), 山东 济南 250118;2.济南市第三人民医院影像中心, 山东 济南 250132;3.天津市第三中心医院重症医学科, 天津 300170
  • 发布日期:2023-02-17
  • 通讯作者: 张华. E-mail:huazhang0709@163.com
  • 基金资助:
    国家自然科学基金(81973139);山东省自然科学基金(ZR2020MH043)

Relationship between carotid artery stenosis and white matter structural topological properties in the elderly

WANG Shaohu1, MU Xin2, XU Chengfei3, ZHAO Yingxin1, ZHANG Hua1   

  1. 1. School of Clinical and Basic Medical Sciences, Institute of Basic Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250118, Shandong, China;
    2. Department of Medical Imaging Center, Third Peoples Hospital of Jinan, Jinan 250132, Shandong, China;
    3. Department of Critical Care Medicine, Tianjin Third Central Hospital, Tianjin 300170, China
  • Published:2023-02-17

摘要: 目的 探讨老年人颈动脉狭窄与脑白质结构网络拓扑属性之间的关系。 方法 选取济南地区颈动脉狭窄老年人101例为研究对象,根据北美症状性颈动脉内膜切除试验法(NASCET)分为轻(n=35)、(n=34)、重度狭窄(n=32)组。采用确定性纤维追踪技术构建研究对象的脑白质结构网络;基于图论分析方法研究轻、中、重度狭窄组的脑白质结构网络拓扑属性之间的差异;运用多元线性回归分析颈动脉狭窄程度与脑白质结构网络拓扑属性之间的关系。 结果 重度狭窄组局部效率(Eloc)低于轻、中度狭窄组(P均<0.001),其最短路径长度(Lp)大于轻、中度狭窄组(P<0.001,P=0.016);中、重度狭窄组的聚类系数(Cp)低于轻度狭窄组(P=0.009,P<0.001);重度狭窄组的小世界属性(σ)低于轻度狭窄组(P=0.01)。多元线性回归分析结果显示,颈动脉狭窄程度分别与Eloc、Cp、σ呈负相关(Eloc:中度狭窄组β=-0.026,P=0.002,重度狭窄组β=-0.060,P<0.001;Cp:中度狭窄组β=-0.018,P=0.007,重度狭窄组β=-0.031,P<0.001;σ:中度狭窄组β=-0.195,P=0.026,重度狭窄组β=-0.301,P=0.001);颈动脉狭窄程度与Lp呈正相关(重度狭窄组β=0.346,P=0.007)。 结论 老年人颈动脉狭窄与脑白质结构网络拓扑属性相关,应针对该人群采取积极防治措施以延缓其脑白质损伤的进展。

关键词: 脑白质结构网络, 拓扑属性, 颈动脉狭窄, 老年人

Abstract: Objective To explore the relationship between carotid artery stenosis and white matter structural topological properties in the elderly. Methods According to the North American Symptomatic Carotid Endarterectomy Test(NASCET), 101 elderly people with carotid artery stenosis were divided into mild(n=35), moderate(n=34)and severe(n=32)stenosis groups. The white matter structure network was constructed with deterministic fiber tracking technology. Based on graph theory analysis, the differences among the topological attributes of white matter structure network in the three groups were analyzed. The relationship between the degree of carotid stenosis and topological attributes of white matter structure network was analyzed with multivariate linear regression. Results The local efficiency(Eloc)of severe stenosis group was lower than that of mild and moderate stenosis groups(both P<0.001), and the length of the shortest path(Lp)was greater than that of the other two group(P<0.001, P=0.016). The cluster coefficient(Cp)of moderate and severe stenosis groups was lower than that of mild stenosis group(P=0.009, P<0.001). The small world attribute(σ)of severe stenosis group was lower than that of mild stenosis group(P=0.01). The results of multivariate linear regression showed that the degree of carotid stenosis was negatively related to Eloc, Cp and σ(Eloc: moderate stenosis group β=-0.026, P=0.002, severe stenosis group β=-0.060, P<0.001; Cp: moderate stenosis group β=-0.018, P=0.007, severe stenosis group β=-0.031, P<0.001; σ: moderate stenosis group β=-0.195, P=0.026, severe stenosis group β=-0.301, P=0.001), but positively correlated with Lp(severe stenosis group β=0.346, P=0.007). Conclusion Carotid artery stenosis in the elderly is associated with the topological properties of the white matter structure network, so active prevention and treatment measures should be taken for this population to delay the progression of white matter injury.

Key words: White matter structure network, Topology property, Carotid artery stenosis, Elderly

中图分类号: 

  • R181.3
[1] Jonathan GR, Arenaza-Urquijo EM, Knopman DS, et al. White matter hyperintensities: relationship to amyloid and tau burden [J]. Brain, 2019, 142(8): 2483-2491.
[2] Habes M, Sotiras A, Erus G, et al. White matter lesions: spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy [J]. Neurology, 2018, 91(10): e964-e975.
[3] Rastogi A, Weissert R, Bhaskar SMM. Emerging role of white matter lesions in cerebrovascular disease [J]. Eur J Neurosci, 2021, 54(4): 5531-5559.
[4] Hagar B, Tzuri LW, Amihai R, et al. White matter lesions, cerebral inflammation and cognitive function in a mouse model of cerebral hypoperfusion [J]. Brain Res, 2019, 1711: 193-201. doi: 10.1016/j.brainres.2019.01.017.
[5] 张雯, 胡永伟, 乔彤. 颈动脉狭窄患者颅内脑白质高信号负荷与认知功能减退的相关性[J]. 中国心血管杂志(电子版), 2020, 12(2): 127-132. ZHANG Wen, HU Yongwei, QIAO Tong. Relationship between white matter hyperintensity load and cognitive decline in patients with carotid artery stenosis [J]. Chinese Journal of Cardiovascular Medicine(Electronic Version), 2020, 12(2): 127-132.
[6] Ye H, Wang Y, Qiu J, et al. White matter hyperintensities and their subtypes in patients with carotid artery stenosis: a systematic review and meta-analysis [J]. BMJ Open, 2018, 8(5): e020830. doi: 10.1136/bmjopen-2017-020830.
[7] Liu Q, Bhuiyan MIH, Liu R, et al. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function [J]. J Neuroinflammation, 2021, 18(1): 187. doi: 10.1186/s12974-021-02234-8.
[8] Elhfnawy AM, Volkmann J, Schliesser M, et al. Are cerebral white matter lesions related to the presence of bilateral internal carotid artery stenosis or to the length of stenosis among patients with ischemic cerebrovascular events? [J]. Front Neurol, 2019, 10: 919. doi: 10.3389/fneur.2019.00919.
[9] Baradaran H, Mtui EE, Richardson JE, et al. White matter diffusion abnormalities in carotid artery disease: a systematic review and Meta-analysis[J]. J Neuroimaging, 2016, 26(5): 481-488.
[10] Frey BM, Petersen M, Schlemm E, et al. White matter integrity and structural brain network topology in cerebral small vessel disease: the Hamburg city health study [J]. Hum Brain Mapp, 2021, 42(5): 1406-1415.
[11] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems [J]. Nat Rev Neurosci, 2009, 10(3): 186-198.
[12] Yang F, Zhang J, Fan L, et al. White matter structural network disturbances in first-episode, drug-naïve adolescents with generalized anxiety disorder [J]. J Psychiatr Res, 2020, 130: 394-404. doi: 10.1016/j.jpsychires.2020.08.004.
[13] Sheng X, Chen H, Shao P, et al. Brain structural network compensation is associated with cognitive impairment and Alzheimers disease pathology [J]. Front Neurosci, 2021, 15: 630278. doi: 10.3389/fnins.2021.630278.
[14] Tsai JD, Ho MC, Lee HY, et al. Disrupted white matter connectivity and organization of brain structural connectomes in tuberous sclerosis complex patients with neuropsychiatric disorders using diffusion tensor imaging [J]. MAGMA, 2021, 34(2): 189-200.
[15] 中华医学会外科学分会血管外科学组. 颈动脉狭窄诊治指南[J]. 中国血管外科杂志(电子版), 2017, 9(3): 169-175. Vascular Surgery Group, Surgery Branch, Chinese Medical Association. Guidelines for diagnosis and treatment of carotid stenosis [J]. Chinese Journal of Vascular Surgery(Electronic Version), 2017, 9(3): 169-175.
[16] Zhong G, Lou M. Multimodal imaging findings in normal-appearing white matter of leucoaraiosis: a review [J]. Stroke Vasc Neurol, 2016, 1(2): 59-63.
[17] Liu H, Liu J, Zhao H, et al. Association of brain white matter lesions with arterial stiffness assessed by cardio-ankle vascular index. the Beijing vascular disease evaluation study(BEST)[J]. Brain Imaging Behav, 2021, 15(2): 1025-1032
[18] Liu C, Zou L, Tang X, et al. Changes of white matter integrity and structural network connectivity in nondemented cerebral small-vessel disease [J]. J Magn Reson Imaging, 2020, 51(4): 1162-1169.
[19] García RA, Martí AC, Cabeza C, et al. Small-worldness favours network inference in synthetic neural networks [J]. Sci Rep, 2020, 10(1): 2296. doi: 10.1038/s41598-020-59198-7.
[20] Bassett DS, Bullmore ET. Small-world brain networks revisited [J]. Neuroscientist, 2017, 23(5): 499-516.
[21] Wang J, Gu Y, Dong W, et al. Lower small-worldness of intrinsic brain networks facilitates the cognitive protection of intellectual engagement in elderly people without dementia: a near-infrared spectroscopy study [J]. Am J Geriatr Psychiatry, 2020, 28(7): 722-731.
[22] 王金芳, 石庆丽, 陈红燕, 等. 脑白质病变患者脑结构网络小世界属性与认知功能障碍关系的弥散张量成像研究[J]. 中国康复理论与实践, 2017, 27(7): 780-784. WANG Jinfang, SHI Qingli, CHEN Hongyan, et al. Relationship between small-world network and cognitive impairment for patients with white matter lesions based on diffusion tensor imaging [J]. Chinese Journal Rehabilitation Theory and Practice, 2017, 27(7): 780-784.
[23] Lou C, Duan X, Altarelli I, et al. White matter network connectivity deficits in developmental dyslexia [J]. Hum Brain Mapp, 2019, 40(2): 505-516.
[24] Zhang J, Liu Z, Li Z, et al. Disrupted white matter network and cognitive decline in type 2 diabetes patients [J]. J Alzheimers Dis, 2016, 53(1): 185-195.
[25] Li X, Ma C, Sun X, et al. Disrupted white matter structure underlies cognitive deficit in hypertensive patients [J]. Eur Radiol, 2016, 26(9): 2899-2907.
[26] Porcu M, Garofalo P, Craboledda D, et al. Carotid artery stenosis and brain connectivity: the role of white matter hyperintensities [J]. Neuroradiology, 2020, 62(3): 377-387.
[27] Avelar WM, DAbreu A, Coan AC, et al. Asymptomatic carotid stenosis is associated with gray and white matter damage [J]. Int J Stroke, 2015, 10(8): 1197-1203.
[1] 赵思博,彭立,凌鸿翔. 农村老年人医疗保险参与和自杀风险的关系[J]. 山东大学学报 (医学版), 2022, 60(4): 113-118.
[2] 苏永刚,王睿,杨同卫. 健康中国视域下老年人群自杀的影响因素及预防对策[J]. 山东大学学报 (医学版), 2022, 60(2): 8-13.
[3] 于书卷,王美娟,陈丽,曹英娟,吕晓燕,刘雪燕,林鹏,颜景政. 老年2型糖尿病患者轻度认知功能障碍的影响因素[J]. 山东大学学报 (医学版), 2022, 60(11): 108-112.
[4] 王辛,郭丹,梁佳瑞,郭丽,王健. 社会资本对老年人健康促进行为的影响[J]. 山东大学学报 (医学版), 2021, 59(7): 97-103.
[5] 郝文婷,李洁,景正月,赵丹,袁叶敏,于才婷,周成超. 衰弱在农村慢性病老年人睡眠质量与生活质量间的中介作用[J]. 山东大学学报 (医学版), 2021, 59(2): 102-107.
[6] 吕岩,于潇,蔺新英,赵琦,王保珍. 聊城市老年女性膳食模式与抑郁症状的关系[J]. 山东大学学报 (医学版), 2020, 58(11): 103-108.
[7] 景翔,王亚丽,卢露,夏宇,焦安安,李耀祖,徐凌忠. 农村老年人日常活动能力、社会支持与孤独感的关系:一般自我效能的中介作用[J]. 山东大学学报 (医学版), 2020, 58(1): 94-99.
[8] 朱锡德,孟凡国,张建宁. 细孔钻颅微创治疗老年创伤性脑内血肿[J]. 山东大学学报 (医学版), 2019, 57(3): 69-74.
[9] 袁华财,张甜甜,郭冬梅,张欢欢,沈德嫱,陈立勇,蔺新英. 微型营养评价量表在社区老年人群中的信效度评价[J]. 山东大学学报 (医学版), 2018, 56(9): 77-82.
[10] 刘春红,田鑫雨,王得翔,石慧,肖伟. 全球肺功能倡议预计值对济南市老年人的适用性检验[J]. 山东大学学报 (医学版), 2018, 56(7): 46-50.
[11] 胡岩,徐凌忠,苏丽娜,李谧,于蕊. 山东省农村老年人生活照料需求及其影响因素[J]. 山东大学学报 (医学版), 2018, 56(2): 74-79.
[12] 潘芳. 基于不同理论模式的老年人心理健康评估的研究进展[J]. 山东大学学报(医学版), 2017, 55(9): 1-5.
[13] 李长瑾,洪炜,赵佳,甘伟. 老年人生活质量与心理弹性的关系及领悟社会支持的中介作用[J]. 山东大学学报(医学版), 2017, 55(9): 6-10.
[14] 江虹,徐晶晶,王瑞,周雅茹,伊向仁, 潘芳. 城市老年人的孤独感与社会支持的增龄性变化及影响因素[J]. 山东大学学报(医学版), 2017, 55(9): 17-22.
[15] 江虹,徐晶晶,王瑞,伊向仁,周雅茹,潘芳. 不同年龄阶段老年人的幸福感、心理压力与心理弹性研究[J]. 山东大学学报(医学版), 2017, 55(9): 11-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!