山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (1): 17-26.doi: 10.6040/j.issn.1671-7554.0.2022.1064
• 基础医学 • 上一篇
张建树1,张瀚文1,赵文静2
ZHANG Jianshu1, ZHANG Hanwen1, ZHAO Wenjing2
摘要: 目的 探讨长链非编码RNA ZNF528-AS1对乳腺癌他莫昔芬耐药及进展转移的影响及潜在调控机制。 方法 利用RNA-seq高通量测序技术分析乳腺癌他莫昔芬耐药细胞/成瘤组织与亲本细胞/成瘤组织间差异表达的lncRNA,筛选与乳腺癌他莫西芬耐药相关的候选lncRNA,利用实时定量PCR(qRT-PCR)技术验证候选lncRNA的表达。通过脂质体转染乳腺癌细胞,构建过表达及敲低ZNF528-AS1的细胞模型。利用细胞增殖实验、克隆形成实验、成球实验、5-乙炔基-2'-脱氧尿嘧啶核苷(EdU)实验检测ZNF528-AS1对乳腺癌细胞增殖、肿瘤干性及他莫昔芬耐药性的影响。Transwell迁移和侵袭实验检测ZNF528-AS1对乳腺癌细胞转移能力的影响。利用RNA-seq高通量测序及生物信息学分析技术寻找ZNF528-AS1的下游调控通路,并通过Western blotting及细胞功能实验等进行验证。 结果 RNA-seq高通量测序分析筛选出了在他莫昔芬耐药细胞/成瘤组织与亲本细胞/成瘤组织间差异表达的lncRNAs。qRT-PCR实验结果证实了差异lncRNA的表达,并发现ZNF528-AS1在他莫昔芬耐药细胞中的表达上调最为明显。在乳腺癌细胞中过表达ZNF528-AS1能够提高细胞的增殖水平、克隆形成能力、肿瘤干性及对他莫昔芬的耐药性。此外,过表达ZNF528-AS1可增强乳腺癌细胞的迁移及侵袭能力。相应地,在乳腺癌细胞中敲低ZNF528-AS1能够降低细胞的增殖、他莫昔芬耐药性、肿瘤干性、迁移及侵袭等能力。RNA-seq高通量测序结合生物信息学分析结果显示,过表达ZNF528-AS1能够参与调控转化生长因子-β(TGF-β)信号通路。Western blotting结果证实ZNF528-AS1能够同时激活经典和非经典TGF-β信号通路。TGF-β通路抑制剂SB431542能够逆转ZNF528-AS1过表达增强的细胞增殖、迁移及侵袭能力。 结论 ZNF528-AS1能够促进乳腺癌他莫昔芬耐药及进展转移,其作用机制可能与激活TGF-β通路有关。
中图分类号:
[1] Harrod A, Lai CF, Goldsbrough I, et al. Genome engineering for estrogen receptor mutations reveals differential responses to anti-estrogens and new prognostic gene signatures for breast cancer [J]. Oncogene, 2022. doi:0.1038/s41388-022-02483-8. [2] Battisti NML, Smith IE. Preventing late recurrence in hormone receptor-positive early breast cancer: a review [J]. Eur J Cancer, 2022, 172: 53-64. doi: 10.1016/j.ejca.2022.05.028. [3] Jeffreys SA, Powter B, Balakrishnar B, et al. Endocrine resistance in breast cancer: the role of estrogen receptor stability [J]. Cells, 2020, 9(9): 2077. doi: 10.3390/cells9092077. [4] Chen B, Dragomir MP, Yang C, et al. Targeting non-coding RNAs to overcome cancer therapy resistance [J]. Signal Transduct Target Ther, 2022, 7(1): 121. doi: 10.1038/s41392-022-00975-3. [5] 刘岩, 张曼, 姜朝阳, 等. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报(医学版), 2022, 60(6): 1-9. LIU Yan, ZHANG Man, JIANG Chaoyang, et al. Mechanism of LncRNA-HOTAIR regulating macrophage migration through modulating H3K27me3 [J]. Journal of Shandong University(Health Sciences), 2022, 60(6): 1-9. [6] Lin X, Dinglin X, Cao S, et al. Enhancer-driven lncRNA BDNF-AS induces endocrine resistance and malignant progression of breast cancer through the RNH1/TRIM21/mTOR cascade [J]. Cell Rep, 2020, 31(10): 107753. doi: 10.1016/j.celrep.2020.107753. [7] Barazetti JF, Jucoski TS, Carvalho TM, et al. From micro to long: non-coding RNAs in tamoxifen resistance of breast cancer cells [J]. Cancers(Basel), 2021, 13(15): 3688. doi: 10.3390/cancers13153688. [8] Zhang H, Zhang J, Dong L, et al. LncRNA ATXN8OS enhances tamoxifen resistance in breast cancer [J]. Open Med(Wars), 2021, 16(1): 68-80. [9] Shi Q, Li Y, Li S, et al. LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer [J]. Nat Commun, 2020, 11(1): 5513. doi: 10.1038/s41467-020-19349-w. [10] Saha T, Lukong KE. Breast cancer stem-like cells in drug resistance: a review of mechanisms and novel therapeutic strategies to overcome drug resistance [J]. Front Oncol, 2022, 12: 856974. doi: 10.3389/fonc.2022.856974. [11] Mao XD, Wei X, Xu T, et al. Research progress in breast cancer stem cells: characterization and future perspectives [J]. Am J Cancer Res, 2022, 12(7): 3208-3222. [12] Xu H, Zhang F, Gao X, et al. Fate decisions of breast cancer stem cells in cancer progression [J]. Front Oncol, 2022, 12: 968306. doi: 10.3389/fonc.2022.968306. [13] Ibragimova M, Tsyganov M, Litviakov N. Tumour stem cells in breast cancer [J]. Int J Mol Sci, 2022, 23(9): 5058. doi: 10.3390/ijms23095058. [14] Alataki A, Dowsett M. Human epidermal growth factor receptor-2 and endocrine resistance in hormone-dependent breast cancer [J]. Endocr Relat Cancer, 2022, 29(8): R105-R122. [15] Dong C, Wu J, Chen Y, et al. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer [J]. Front Pharmacol, 2021, 12: 628690. doi: 10.3389/fphar.2021.628690. [16] Azuma K, Ikeda K, Suzuki T, et al. TRIM47 activates NF-kappaB signaling via PKC-epsilon/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer [J]. Proc Natl Acad Sci USA, 2021, 118(35): e2100784118. doi: 10.1073/pnas.2100784118. [17] Shi X, Yang J, Deng S, et al. TGF-beta signaling in the tumor metabolic microenvironment and targeted therapies [J]. J Hematol Oncol, 2022, 15(1): 135. doi: 10.1186/s13045-022-01349-6. [18] Takahashi K, Podyma-Inoue KA, Saito M, et al. TGF-beta generates a population of cancer cells residing in G1 phase with high motility and metastatic potential via KRTAP2-3 [J]. Cell Rep, 2022, 40(13): 111411. doi: 10.1016/j.celrep.2022.111411. [19] Maslankova J, Vecurkovska I, Rabajdova M, et al. Regulation of transforming growth factor-beta signaling as a therapeutic approach to treating colorectal cancer [J]. World J Gastroenterol, 2022, 28(33): 4744-4761. [20] 刘群, 李丽娜, 刘健, 等. 卵巢癌SOX4介导TGF-β1诱导的上皮间质转化对侵袭转移能力的影响 [J]. 首都医科大学学报, 2022, 43(3): 336-342. LIU Qun, LI Lina, LIU Jian, et al. Effect of SOX4-mediated TGF-β1-induced epithelial-mesenchymal transition on invasion and metastasis in ovarian cancer [J]. Journal of Capital Medical University, 2022, 43(3): 336-342. [21] Peng P, Zhu H, Liu D, et al. TGFBI secreted by tumor-associated macrophages promotes glioblastoma stem cell-driven tumor growth via integrin alphavbeta5-Src-Stat3 signaling [J]. Theranostics, 2022, 12(9): 4221-4236. [22] Thambyrajah R, Monteiro R. In the spotlight: the role of TGFbeta signalling in haematopoietic stem and progenitor cell emergence [J]. Biochem Soc Trans, 2022, 50(2): 703-712. [23] Garcia-Gomez P, Golan I, Dadras MS, et al. NOX4 regulates TGFbeta-induced proliferation and self-renewal in glioblastoma stem cells [J]. Mol Oncol, 2022, 16(9): 1891-1912. [24] Zhang Z, Xu Y. FZD7 accelerates hepatic metastases in pancreatic cancer by strengthening EMT and stemness associated with TGF-beta/SMAD3 signaling [J]. Mol Med, 2022, 28(1): 82. doi: 10.1186/s10020-022-00509-1. [25] Wang B, Cao C, Liu X, et al. BRCA1-associated protein inhibits glioma cell proliferation and migration and glioma stem cell self-renewal via the TGF-beta/PI3K/AKT/mTOR signalling pathway [J]. Cell Oncol(Dordr), 2020, 43(2): 223-235. [26] Rodrigues-Junior DM, Tsirigoti C, Lim SK, et al. Extracellular vesicles and transforming growth factor beta signaling in cancer [J]. Front Cell Dev Biol, 2022, 10: 849938. doi: 10.3389/fcell.2022.849938. [27] Chan MK, Chung JY, Tang PC, et al. TGF-beta signaling networks in the tumor microenvironment [J]. Cancer Lett, 2022, 550:215925. doi: 10.1016/j.canlet.2022.215925. [28] Wang Z, Chen J, Wang S, et al. RGS6 suppresses TGF-beta-induced epithelial-mesenchymal transition in non-small cell lung cancers via a novel mechanism dependent on its interaction with SMAD4 [J]. Cell Death Dis, 2022, 13(7): 656. doi: 10.1038/s41419-022-05093-0. [29] Zou ML, Chen ZH, Teng YY, et al. The Smad dependent TGF-beta and BMP signaling pathway in bone remodeling and therapies [J]. Front Mol Biosci, 2021, 8: 593310. doi: 10.3389/fmolb.2021.593310. [30] Aykul S, Maust J, Thamilselvan V, et al. Smad2/3 activation regulates Smad1/5/8 signaling via a negative feedback loop to inhibit 3T3-L1 adipogenesis [J]. Int J Mol Sci, 2021, 22(16): 8472. doi: 10.3390/ijms22168472. [31] Tzavlaki K, Moustakas A. TGF-beta signaling [J]. Biomolecules, 2020, 10(3): 487. doi: 10.3390/biom10030487. [32] Song X, Wei C, Li X. The signaling pathways associated with breast cancer bone metastasis [J]. Front Oncol, 2022, 12: 855609. doi: 10.3389/fonc.2022.855609. [33] Chen X, Yan N. Stachydrine inhibits TGF-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma cells through the TGF-beta/Smad and PI3K/Akt/mTOR signaling pathways[J]. Anticancer Drugs, 2021, 32(8): 786-792. |
[1] | 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46. |
[2] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[3] | 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5. |
[4] | 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29. |
[5] | 周亚杰,王斐,于理想,余之刚. 女性乳腺癌保乳手术决策相关因素[J]. 山东大学学报 (医学版), 2022, 60(12): 1-6. |
[6] | 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16. |
[7] | 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139. |
[8] | 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118. |
[9] | 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84. |
[10] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
[11] | 庞兆飞,柳勇,赵小刚,闫涛,陈效伟,杜贾军. 基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效[J]. 山东大学学报 (医学版), 2021, 59(11): 19-28. |
[12] | 郭田,付依林,高聆,宋勇峰,付国斌,耿冲,王潍博. 142例女性乳腺癌患者临床特征与甲状腺激素水平的关联分析[J]. 山东大学学报 (医学版), 2020, 58(6): 53-59. |
[13] | 杨雪梅,李娟,王一凡,李培龙,王允山,杜鲁涛,王传新. 3-lncRNAs预后模型在HER2阳性乳腺癌预后评价中的意义[J]. 山东大学学报 (医学版), 2020, 58(5): 69-76. |
[14] | 高奎,万广宁,宋晓鹏,信波. 吡咯替尼治疗曲妥珠耐药HER2阳性乳腺癌1例[J]. 山东大学学报 (医学版), 2020, 58(12): 117-120. |
[15] | 孙志刚,时鹏,田兴松. 乳腺癌术后促纤维增生性肌纤维母细胞瘤1例[J]. 山东大学学报 (医学版), 2020, 58(1): 121-124. |
|