您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (12): 92-97.doi: 10.6040/j.issn.1671-7554.0.2018.411

• 公共卫生与管理学 • 上一篇    

血小板计数与代谢综合征关联性的前瞻性队列研究

马晓天1,顾建华1,王丽2,薛付忠1,刘言训1   

  1. 1.山东大学公共卫生学院生物统计学系, 山东 济南 250012;2.山东电力中心医院心内科, 山东 济南 250001
  • 发布日期:2022-09-27
  • 通讯作者: 刘言训. E-mail:liu-yx@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81273177)

Association between platelet count and metabolic syndrome based on a prospective cohort study

MA Xiaotian1, GU Jianhua1, WANG Li2, XUE Fuzhong1, LIU Yanxun1   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Cardiology, Shandong Electric Power Center Hospital, Jinan 250001, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨血小板计数与代谢综合征的关联性。 方法 基于大规模健康管理队列,选取随访期间进行过至少两次体检记录、重要指标无缺失、基线未患有代谢综合征的人群建立前瞻性队列。按照基线血小板计数四分位数将研究对象分为4组,比较各组的发病密度。对这4组人群的基线各变量的特征进行描述。使用Cox比例风险回归模型,分别以血小板计数的数值变量或四分位数分组作为研究的变量,逐渐调整年龄、性别、BMI、高血糖、高血压、血脂异常,探究血小板计数在调整混杂因素前后是否仍为代谢综合征的危险因素。 结果 共计14 173位年龄在21~60岁的体检者进入队列,总计随访41 014.8人年,平均随访时间2.89年,随访中共有1 611人被诊断为代谢综合征,总人群发病密度为39.28/1 000人年。血小板计数在模型1(单因素)、模型2(调整年龄、性别)、模型3(调整年龄、性别、BMI、高血糖、高血压和血脂异常)中的风险比(HR)始终有统计学意义,表明随着血小板计数的增大代谢综合征的发病风险增加。当以血小板计数四分位数分组为研究的变量时,在模型1的单因素回归中,Q2组与Q1组相比,代谢综合征发病风险并未增加;Q3组和Q4组均有较高的风险增加;在模型2和模型3调整混杂因素后,Q2、Q3、Q4组均有统计学意义,且它们相对于Q1组的HR逐渐增大,结果表明随着血小板计数增加,代谢综合征发病风险也会增大。 结论 血小板计数升高是代谢综合征发生的独立危险因素。

关键词: 血小板计数, 代谢综合征, 体检人群, 队列, Cox模型

Abstract: Objective To explore the correlation between platelet count and metabolic syndrome. Methods Our cohort was based on a “Multi-center Health Management Cohort”. People who did at least two health examinations, didnt have missing value in important variables, and were free of metabolic syndrome at baseline were selected into the prospective cohort. The study subjects were divided into four groups according to the baseline platelet count quartile, and the incidence density of each group was compared. The characteristics of each variable were described in the four groups at baseline. The Cox proportional regression model was used in this study, where we adjusted age, gender, BMI, hyperglycemia, hypertension and dysplasia gradually, to explore whether the platelet count was still a risk factor for metabolic syndrome before and after adjustment of confounding factors. Results There were 14 173 individuals who were aged 21-60 in this cohort. The total follow-up time was 41 014.8 person-year. The average follow-up time was 2.89 years. A total of 1 611 people were diagnosed as having metabolic syndrome. The incidence density of this cohort was 39.28/1 000 person-year. The platelet counts were always statistically significant in model 1(single factor analysis), 山 东 大 学 学 报 (医 学 版)56卷12期 -马晓天,等.血小板计数与代谢综合征关联性的前瞻性队列研究 \=-model 2(adjusted for age and gender)and model 3(adjusted for age, gender, BMI, hyperglycemia, hypertension and dysplasia), with similar HR values. Q2 didnt have a statistical difference with Q1 in model 1, while Q3 and Q4 had. In model 2 and model 3, Q2-Q4 all had statistical significance when compared to Q1, and their HR values increased from Q2 to Q4. It showed that with the increase of platelet count, the risk of metabolic synthesis increased. Conclusion Elevated platelet count is an independent risk factor for metabolic syndrome.

Key words: Platelet count, Metabolic syndrome, Check-up crowd, Cohort, Cox model

中图分类号: 

  • R589
[1] 中华医学会糖尿病学分会代谢综合征研究协作组. 中华医学会糖尿病学分会关于代谢综合征的建议[J]. 中国糖尿病杂志, 2004, 12(3): 156-161.
[2] Samson SL, Garber AJ. Metabolic syndrome[J]. Endocrin Metab Clin, 2014, 43(1): 1-23.
[3] Chew GT, Gan SK, Watts GF. Revisiting the metabolic syndrome[J]. Med J Aust, 2006, 185(8): 445-449.
[4] 李广琦, 闫成锐, 殷应传, 等. 合肥市40岁以上社区人群代谢综合征的患病现状及危险因素分析[J]. 安徽医科大学学报, 2017, 52(1): 117-120. LI Guangqi, YAN Chengrui, YIN Yingchuan, et al. Analysis of prevalence and risk factors of metabolic syndrome in Hefei community population aged over 40[J]. Acta Universitatis Medicinalis Anhui, 2017, 52(1): 117-120.
[5] 顾东风, Reynolds K, 杨文杰, 等. 中国成年人代谢综合征的患病率[J]. 中国糖尿病杂志, 2005, 13(3): 181-186. GU Dongfeng, Reynolds K, YANG Wenjie, et al. The prevalence of metabolic syndrome in the general adult population aged 35-74 years in China[J]. Chin J Diabetes, 2005, 13(3): 181-186.
[6] 赵天明, 王增武, 张林峰, 等. 北方农村35岁及以上人群代谢综合征患病情况调查[J]. 中华疾病控制杂志, 2015, 19(5): 439-442. ZHAO Tianming, WANG Zengwu, ZHANG Linfeng, et al. Prevalence of metabolic syndrome among rural residents aged 35 and above in North China[J]. Chinese Journal of Disease Control & Prevention, 2015, 19(5): 439-442.
[7] Ahluwalia N, Andreeva VA, Kesse-Guyot E, et al. Dietary patterns, inflammation and the metabolic syndrome[J]. Diabetes Metab, 2013, 39(2): 99-110.
[8] Wickramatilake CM, Mohideen MR, Pathirana C. Association of metabolic syndrome with testosterone and inflammation in men[J]. Ann Endocrinol, 2015, 76(3): 260-263.
[9] Stafeev IS, Menshikov MY, Tsokolaeva ZI, et al. Molecular mechanisms of latent inflammation in metabolic syndrome. Possible role of sirtuins and peroxisome proliferator-activated receptor type γ[J]. Biochemistry, 2015, 80(10): 1217-1226.
[10] Chuang TJ, Liu JS, Li PF, et al. The relationships between hematogram and metabolic syndrome in elderly subgroups: a Taiwan cohort study[J]. Arch Gerontol Geriat, 2016, 63: 59-66. doi: 10.1016/j.archger.2015.11.006.
[11] Aypak C, Bircan MA. Could mean platelet volume among complete blood count parameters be a surrogate marker of metabolic syndrome in pre-pubertal children?[J]. Platelets, 2013, 25(6): 393-398.
[12] Liu H, Hsu CH, Lin JD, et al. Predicting metabolic syndrome by using hematogram models in elderly women[J]. Platelets, 2014, 25(2): 97-101.
[13] 吴站蓉, 杨昆, 平昭, 等. 血小板计数变化与代谢综合征及其组分的关联性研究[J]. 中国疗养医学, 2016, 25(3): 225-228.
[14] 王浩, 吴春兰, 宋永敏, 等. 老年代谢综合征患者MPV、PDW、PLT与非代谢综合征组患者的差异对比分析[J]. 中国继续医学教育, 2015, 7(16): 20-21. WANG Hao, WU Chunlan, SONG Yongmin, et al. Contrastive analysis of the difference between old metabolic syndrome patients’ MPV, PDW, PLT with non MS group[J]. China Continuing Medical Education, 2015, 7(16): 20-21.
[15] 刘娅飞, 邢娉, 徐秀琴, 等. 山东多中心健康管理纵向观察队列[J]. 山东大学学报(医学版), 2017, 55(6): 30-36. LIU Yafei, XING Pin, XU Xiuqin, et al. Shandong multi-center longitudinal cohort for health management: a brief introduction[J]. Journal of Shandong University(Health Sciences), 2017, 55(6): 30-36.
[16] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国糖尿病杂志, 2018, 10(1): 4-67.
[17] 中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版)[J]. 中国循环杂志, 2016, 31(10): 7-28.
[18] 中国高血压防治指南修订委员会. 中国高血压防治指南2010[J]. 中华心血管病杂志, 2011, 39(7): 701-708. Writing Group of Chinese Guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension[J]. Chinese Journal of Cardiology, 2011, 39(7): 701-708.
[19] Jesri A, Okonofua EC, Egan BM. Platelet and white blood cell counts are elevated in patients with the metabolic syndrome[J]. J Clin Hypertens, 2005, 7(12): 705-711.
[20] Nebeck K, Gelaye B, Lemma S, et al. Hematological parameters and metabolic syndrome: findings from an occupational cohort in Ethiopia[J]. Diabetes Metab, 2012, 6(1): 22-27.
[21] Chen YL, Hung YJ, He CT, et al. Platelet count can predict metabolic syndrome in older women[J]. Platelets, 2015, 26(1): 31-37.
[22] Lim HJ, Seo MS, Shim JY, et al. The association between platelet count and metabolic syndrome in children and adolescents[J]. Platelets, 2015, 26(8): 758-763.
[23] 刘立旻, 赖亚新, 贡鸣, 等. 代谢综合征血小板计数与心电图ST-T段异常相关性研究[J]. 中国实用内科杂志, 2012, 32(10): 783-786. LIU Limin, LAI Yaxin, GONG Ming, et al. The correlation of platelet count and ST-T segment abnormalities in the patients with metabolic syndrome[J]. Chinese Journal of Practical Internal Medicine, 2012, 32(10): 783-786.
[24] 胡宾, 周玉杰. 代谢综合征发病机制的研究进展[J]. 中华老年心脑血管病杂志, 2012, 14(3): 328-329.
[25] 邵明. 糖尿病合并冠心病患者血小板参数与炎症反应的相关性分析[J]. 现代实用医学, 2016, 28(6): 784-785.
[26] Sentürk T. Platelet function in inflammatory diseases: insights from clinical studies[J]. Inflamm Allergy Drug Targets, 2010, 9(5): 355-363.
[27] 胡艳, 凌文华. 炎症与代谢综合征[J]. 国际内科学杂志, 2006, 33(11): 493-496.
[28] Taniguchi A, Fukushima M, Seino Y, et al. Platelet count is independently associated with insulin resistance in non-obese Japanese type 2 diabetic patients[J]. Metabolism, 2003, 52(10): 1246-1249.
[29] 唐建东, 李清楚, 康志强, 等. 初发2型糖尿病患者胰岛素抵抗与血小板参数的相关性研究[J]. 中国全科医学, 2011, 14(24): 2719-2721. TANG Jiandong, LI Qingchu, KANG Zhiqiang, et al. Relationship between insulin resistance and the platelet parameters in new diagnosed type 2 diabetic patients[J]. Chinese General Practice, 2011, 14(24): 2719-2721.
[30] Bonaccio M, Di Castelnuovo A, De Curtis A, et al. Adherence to the Mediterranean diet is associated with lower platelet and leukocyte counts: results from the Moli-sani study[J]. Blood, 2014, 123(19): 3037-3044.
[1] 扈艳雯,王志媛,郁万江,赵蕙琛,韩合理,徐志鹏,马红,张玉超,刘元涛. 52例肥胖患者脂肪分布与代谢综合征及糖代谢指标的相关性[J]. 山东大学学报 (医学版), 2020, 1(8): 101-106.
[2] 周苗,卞伟玮,柳晓涓,康凤玲,薛付忠,刘静. 嗜碱性粒细胞百分比与慢性肾脏病关系的回顾性队列研究[J]. 山东大学学报 (医学版), 2018, 56(3): 85-90.
[3] 曹瑾,季晓康,孙秀彬,蒋正,薛付忠. γ-谷氨酰转肽酶与高尿酸血症关系的队列分析[J]. 山东大学学报(医学版), 2017, 55(6): 124-128.
[4] 王金涛,苏萍,袁中尚,薛付忠. 部分分布竞争风险模型及其在健康风险评估中的应用[J]. 山东大学学报(医学版), 2017, 55(6): 37-41.
[5] 刘娅飞,邢娉,徐秀琴,杨淑芳,刘言训,袁中尚,薛付忠. 山东多中心健康管理纵向观察队列[J]. 山东大学学报(医学版), 2017, 55(6): 30-36.
[6] 王停停,王金涛,袁中尚,苏萍,薛付忠. 原因别竞争风险模型及其在健康风险评估中的应用[J]. 山东大学学报(医学版), 2017, 55(6): 42-46.
[7] 于涛,刘焕乐,冯新,徐付印,陈亚飞,薛付忠,张成琪. 基于健康管理队列的高血压风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 61-65.
[8] 王春霞,许艺博,杨宁,夏冰,王萍,薛付忠. 基于健康管理队列的冠心病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 66-71.
[9] 张光,王广银,吴红彦, 张红玉,王停停,李吉庆,李敏,康凤玲,刘言训,薛付忠. 健康管理人群高脂血症风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 72-76.
[10] 李江冰,宋心红,林海燕,张冬芝,李向一,许艺博,王丽,薛付忠. 健康管理人群缺血性异常心电图的影响因素[J]. 山东大学学报(医学版), 2017, 55(6): 77-81.
[11] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[12] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[13] 周苗,夏同耀,孙爱玲,李明,申振伟,卞伟玮,蒋正,康凤玲,柳晓涓,薛付忠,刘静. 健康管理人群慢性肾脏病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 98-103.
[14] 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97.
[15] 蒋正,申振伟,张光,李润滋,曹瑾,王丽,薛付忠,刘言训. 基于体检人群的非酒精性脂肪肝筛查工具的建立[J]. 山东大学学报(医学版), 2017, 55(6): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!