您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2017, Vol. 55 ›› Issue (12): 62-65.doi: 10.6040/j.issn.1671-7554.0.2017.447

• • 上一篇    下一篇

健康管理队列慢性阻塞性肺疾病风险预测模型

顾建华1,2,马晓天1,2,李吉庆1,2,薛付忠1,2,王家林3,4   

  1. 1. 山东大学公共卫生学院生物统计学系, 山东 济南 250012;2. 山东大学齐鲁生物医学大数据中心, 山东 济南 250012;3. 山东大学附属山东省肿瘤医院科教部, 山东 济南 250117;4. 山东省医学科学院, 山东 济南 250001
  • 出版日期:2017-12-20 发布日期:2022-09-27
  • 通讯作者: 王家林. E-mail:wangjialin6681@sina.com
  • 基金资助:
    国家自然科学基金(81273177)

Risk prediction model of chronic obstructive pulmonary disease in health management cohort

GU Jianhua1,2, MA Xiaotian1,2, LI Jiqing1,2, XUE Fuzhong1,2, WANG Jialin3,4   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Cheeloo Research Center for Biomedical Big Data, Shandong University, Jinan 250012, Shandong, China;
    3. Department of Science and Education, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, Shandong, China;
    4. Shandong Academy of Medical Sciences, Jinan 250001, Shandong, China
  • Online:2017-12-20 Published:2022-09-27

摘要: 目的 构建健康管理队列慢性阻塞性肺疾病(COPD)的风险预测模型,对模型预测效果进行评价,为COPD的防治提供理论依据。 方法 模型队列的建立基于“山东多中心健康管理纵向观察大数据队列”,共有33 383人进入队列。通过对慢性阻塞性肺疾病发生的危险因素进行变量筛选,应用Cox比例风险回归建立COPD的预测模型,十折交叉验证法判别模型准确性, 受试者工作特征曲线下面积(AUC)衡量模型的辨别能力。 结果 队列观察期间,共发生慢性阻塞性肺疾病136例,发病密度为118.08/10万人年。最终纳入模型的变量为年龄、性别、吸烟、白蛋白、血压和血白细胞计数。模型ROC曲线下面积为0.872(95%CI:0.810~0.934),十折交叉验证后ROC曲线下面积为0.866(95%CI:0.809~0.923)。 结论 构建的慢性阻塞性肺疾病预测模型在健康管理队列中有较好的预测能力。

关键词: 慢性阻塞性肺疾病, 队列研究, 风险预测模型

Abstract: Objective To establish a risk prediction model of chronic obstructive pulmonary disease(COPD)among health management Chinese population, and to evaluate its effects in order to provide theoretical basis for the prevention and treatment of COPD. Methods The model was established based on “Shandong Multicenter Health Management Longitudinal Cohort of Observation Large Data”. A total of 33 383 people were included. Cox proportional hazards regression model for COPD was established after variable screening of the influencing factors of COPD. The stability of the model was tested with ten-fold cross validation. The discriminatory ability of the model was determined with the area under the receiver operating characteristic curve(AUC). Results Altogether 136 COPD cases were observed over the study, resulting in a cumulative incidence of 118.08/100 000 person-year. The risk factors included age, gender, smoke, albumin, blood pressure and white blood cell count. The estimated AUC for the model was 0.872(95%CI: 0.810-0.930). After internal verification by ten-fold cross validation, the AUC was 0.866(95%CI: 0.809-0.923). Conclusion We have constructed a risk model that can be useful in identifying individuals at high risk of COPD in our cohort.

Key words: Chronic obstructive pulmonary disease, Cohort study, Risk prediction model

中图分类号: 

  • R563.9
[1] 中华医学会呼吸病学分会慢性阻塞性肺疾病学组. 慢性阻塞性肺疾病诊治指南(2007年修订版)[J]. 中华结核和呼吸杂志, 2007, 46(1): 8-17.
[2] Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections[J]. Eur Respir J, 2006, 27(2): 397-412.
[3] Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary[J]. Am J Respir Crit Care Med, 2001, 163(5): 1256-1276.
[4] Halbert RJ, Isonaka S, George D, et al. Interpreting COPD prevalence estimates: what is the true burden of disease?[J]. Chest, 2003, 123(123): 1684-1692.
[5] 洪广祥. 中医药治疗慢性阻塞性肺疾病的几点思考[J]. 中华中医药杂志, 2005, 20(1): 16-19.
[6] Zhong N, Wang C, Yao W, et al. Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey[J]. Am J Respir Crit Care Med, 2007, 176(8): 753-760.
[7] 张宏华. 慢性阻塞性肺病的发病机制[J]. 湘南学院学报(医学版), 2003, 5(1): 50-53.
[8] 程显声, 徐希胜, 张珍祥, 等. 1992~1999年慢性阻塞性肺疾病、肺心病社区人群综合干预结果[J]. 中华结核和呼吸杂志, 2001, 24(10): 579-583. CHENG Xiansheng, XU Xisheng, ZHANG Zhenxiang, et al. Results of community intervention trial for chronic obstructive pulmonary diseases and chronic cor-pulmonale from 1992 to 1999] [J]. Chin J Tuberc Respir Dis, 2001, 24(10): 579-583.
[9] 刘春涛, 冯玉麟. 慢性阻塞性肺疾病全球创议 慢性阻塞性肺疾病诊断、管理和预防袖珍指南(2006年修订版)[J]. 中国呼吸与危重监护杂志, 2007, 6(3):230-237.
[10] Fletcher C, Peto R. The natural history of chronic airflow obstruction[J]. Br Med J, 1977, 1(6077): 1645-1648.
[11] Kohansal R, Martinezcamblor P, Agustí A, et al. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort[J]. Am J Respir Crit Care Med, 2009, 180(1): 3-10.
[12] Buist AS, Mcburnie MA, Vollmer WM, et al. International variation in the prevalence of COPD(the BOLD Study): a population-based prevalence study[J]. Lancet, 2007, 370(9589): 741-750.
[13] Macaulay D, Sun SX, Sorg RA, et al. Development and validation of a claims-based prediction model for COPD severity[J]. Respir Med, 2013, 107(10): 1568-1577.
[14] Nwaru BI, Simpson CR, Sheikh A, et al. External validation of a COPD prediction model using population-based primary care data: a nested case-control study[J]. Sci Rep, 2017, 7: 44702. doi: 10.1038/srep44702.
[15] 周玉民, 刘升明, 吕嘉春, 等. 中国慢性阻塞性肺疾病患病率调查方法的研究设计[J]. 中华流行病学杂志, 2006, 27(9): 814-818. ZHOU Yumin, LIU Shengming, LÜ Jiachun, et al. A study on methodology regarding the prevalence survey of chronic obstructive pulmonary disease in China[J]. Chin J Epidemiol, 2006, 27(9): 814-818.
[16] Smedley BD, Syme SL. Promoting health: intervention strategies from social and behavioral research[J]. Am J Health Promot, 2003, 15(2): 149-166.
[17] 冉丕鑫. 慢性阻塞性肺疾病的患病危险因素及其预防[J]. 中华结核和呼吸杂志, 2007, 30(2): 141-143.
[18] 徐永健, 谢俊刚. 国内外COPD流行病学进展[J]. 继续医学教育, 2007, 21(2): 14-16.
[19] Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends[J]. Lancet, 2007, 370(9589): 765-773.
[20] 白冲. 慢性阻塞性肺疾病的危险因素、流行情况及未来发展趋势[J]. 中国呼吸与危重监护杂志, 2007, 6(6): 403-405.
[21] 孟俊峰. COPD危险因素分析[J]. 临床肺科杂志, 2011, 16(3): 424-426.
[22] 王婧, 高明明. 慢性阻塞性肺疾病对原发性高血压的影响及机制[J]. 山东医药, 2008, 48(46): 111-112.
[23] Han MK, Mclaughlin VV, Criner GJ, et al. Pulmonary diseases and the heart[J]. Circulation, 2007, 116(25): 2992-3005.
[24] Lode H, Allewelt M, Balk S, et al. A prediction model for bacterial etiology in acute exacerbations of COPD[J]. Infection, 2007, 35(3): 143-149.
[25] Fiaccadori E, Coffrini E, Fracchia C, et al. Hypophosphatemia and phosphorus depletion in respiratory and peripheral muscles of patients with respiratory failure due to COPD[J]. Chest, 1994, 105(5): 1392.
[26] Cui J, Zhou Y, Tian J, et al. A discriminant function model as an alternative method to spirometry for COPD screening in primary care settings in China[J]. J Thorac Dis, 2012, 4(6): 594-600.
[1] 张宁,杨燕,李锐,殷运红,李昊,曲仪庆. 慢阻肺患者感染鲍曼不动杆菌危险因素及耐药性分析[J]. 山东大学学报 (医学版), 2019, 57(9): 88-96.
[2] 徐源佑,杨亚超,王春霞,马晓天,薛付忠,刘言训,王萍. 基于体检队列的胃炎风险预测模型[J]. 山东大学学报 (医学版), 2019, 57(6): 112-116.
[3] 李江冰,宋心红,林海燕,张冬芝,李向一,许艺博,王丽,薛付忠. 健康管理人群缺血性异常心电图的影响因素[J]. 山东大学学报(医学版), 2017, 55(6): 77-81.
[4] 张光,王广银,吴红彦, 张红玉,王停停,李吉庆,李敏,康凤玲,刘言训,薛付忠. 健康管理人群高脂血症风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 72-76.
[5] 王春霞,许艺博,杨宁,夏冰,王萍,薛付忠. 基于健康管理队列的冠心病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 66-71.
[6] 李吉庆,赵焕宗,宋炳红,张理纯,李向一,陈亚飞,王萍,薛付忠. 基于健康管理队列的心血管事件风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 56-60.
[7] 曹瑾,季晓康,孙秀彬,蒋正,薛付忠. γ-谷氨酰转肽酶与高尿酸血症关系的队列分析[J]. 山东大学学报(医学版), 2017, 55(6): 124-128.
[8] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[9] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[10] 周苗,夏同耀,孙爱玲,李明,申振伟,卞伟玮,蒋正,康凤玲,柳晓涓,薛付忠,刘静. 健康管理人群慢性肾脏病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 98-103.
[11] 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97.
[12] 于媛媛,王春霞,苏萍,孙苑潆,薛付忠,刘言训. 健康管理队列白内障发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 104-107.
[13] 柳晓涓,蒋正,康凤玲,周苗,林伟强,薛付忠. 中性粒细胞计数与非酒精性脂肪肝关联性的前瞻性队列研究[J]. 山东大学学报(医学版), 2017, 55(6): 119-123.
[14] 于晓琳,张军,杨柳,周林,崔亮亮,张济. 济南市慢性阻塞性肺部疾病患者在流感季呼吸系统疾病的罹患特征[J]. 山东大学学报(医学版), 2017, 55(3): 79-82.
[15] 柳晓涓,丁荔洁,康凤玲,周苗,薛付忠. 健康管理人群支气管哮喘风险预测模型[J]. 山东大学学报 (医学版), 2017, 55(12): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!