山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (1): 64-71.doi: 10.6040/j.issn.1671-7554.0.2020.1033
甄秋来1,2,吕欣然3,叶辉1,丁绪超3,柴小雪1,胡辛1,周明1,曹莉莉1,3
ZHEN Qiulai1,2, LYU Xinran3, YE Hui1, DING Xuchao3, CHAI Xiaoxue1, HU Xin1, ZHOU Ming1, CAO Lili1,3
摘要: 目的 利用生物分析学方法对癌症基因组图谱(TCGA)数据库的结肠癌数据进行挖掘分析,筛选预后基因,识别结肠癌患者死亡的高低风险,并预测其预后。 方法 访问TCGA并下载结肠癌患者RNA表达数据和临床信息。通过单因素Cox和多因素Cox回归分析,构建比例风险回归模型并形成风险评分公式。根据风险评分中位值将患者分为高风险组和低风险组,识别结肠癌患者死亡风险。采用接收者操作特征曲线(ROC)及曲线下面积(AUC)验证该模型的评估性能。利用R语言对预后相关基因进行生存分析,并对差异基因进行GO功能和KEGG通路富集分析。 结果 结肠癌5 544个差异表达基因中,有27个基因与患者整体生存率相关。从中筛选出GABRD、FAM132B、LRRN4、RP11-400N13.2、RP11-108K3.2、RNU6-403P、RP11-429J17.8、LINC01296、RP11-190J1.3、AC002076.10和CTC-573N18.1共11个基因,构建结肠癌患者的Cox预后模型。ROC分析显示,高风险组5年期生存率为39.5%(95%CI:29.5~53.0),低风险组为89.6%(95%CI:82.2~97.7),AUC=0.827,该模型可以较好地区分高低风险的结肠癌患者。 结论 通过Cox比例风险模型基因获得风险得分并结合临床信息,用作结肠癌患者的预后及生存时间的评估。
中图分类号:
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer J Clin, 2018, 68(6): 394-424. [2] Banskota S, Dahal S, Kwon E, et al. Β-Catenin gene promoter hypermethylation by reactive oxygen species correlates with the migratory and invasive potentials of colon cancer cells [J]. Cell Oncol(Dordr), 2018, 41(5): 569-580. [3] Park SY, Wilkens LR, Setiawan VW, et al. Alcohol intake and colorectal cancer risk in the multiethnic cohort study [J]. Am J Epidemiol, 2019, 188(1): 67-76. [4] Vanella G, Archibugi L, Stigliano S, et al. Alcohol and gastrointestinal cancers [J]. Curr Opin Gastroenterol, 2019, 35(2): 107-113. [5] Fagunwa IO, Loughrey MB, Coleman HG. Alcohol, smoking and the risk of premalignant and malignant colorectal neoplasms [J]. Best Pract Res Clin Gastroenterol, 2017, 31(5): 561-568. [6] Zhang J, Guo S, Li J, et al. Effects of high-fat diet-induced adipokines and cytokines on colorectal cancer development [J]. FEBS Open Bio, 2019, 9(12): 2117-2125. [7] Triff K, McLean MW, Callaway E, et al. Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model [J]. Int J Cancer, 2018, 143(6): 1402-1415. [8] Nadella S, Burks J, Al-Sabban A, et al. Dietary fat stimulates pancreatic cancer growth and promotes fibrosis of the tumor microenvironment through the cholecystokinin receptor [J]. Am J Physiol - Gastrointest Liver Physiol, 2018, 315(5): G699-G712. [9] Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers [J]. J Mol Med, 2014, 92(8): 811-823. [10] Hong SN. Genetic and epigenetic alterations of colorectal cancer [J]. Intest Res, 2018, 16(3): 327. [11] Mc Donald RA, Hata A, MacLean MR, et al. Micro RNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling [J]. Cardiovasc Res, 2012, 93(4): 594-604. [12] Davis-Dusenbery BN, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation [J]. Arterioscler Thromb Vasc Biol, 2011, 31(11): 2370-2377. [13] Xu G, Zhang M, Zhu H, et al. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM [J]. Gene, 2017, 604: 33-40. doi: 10.1016/j.gene.2016.12.016. [14] Sun D, Chen J, Liu L, et al. Establishment of a 12-gene expression signature to predict colon cancer prognosis [J]. PeerJ, 2018, 6: e4942. doi:10.7717/peerj.4942. [15] Zuo SG, Dai GP, Ren XQ. Identification of a 6-gene signature predicting prognosis for colorectal cancer [J]. Cancer Cell Int, 2019, 19: 6. doi: 10.1186/s12935-018-0724-7. [16] Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas(TCGA)[J]. Methods Mol Biol, 2016, 1418: 111-141. doi: 10.1007/978-1-4939-3578-9_6. [17] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J]. Nat Protoc, 2009, 4(1): 44-57. [18] Wong MCS, Huang JJ, Lok V, et al. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location [J]. Clin Gastroenterol Hepatol, 2020(20): 30196-30198. doi: 10.1016/j.cgh.2020.02.026. [19] Araghi M, Soerjomataram I, Jenkins M, et al. Global trends in colorectal cancer mortality: projections to the year 2035 [J]. Int J Cancer, 2019, 144(12): 2992-3000. [20] Kim EK, Song MJ, Jung Y, et al. Proteomic analysis of primary colon cancer and synchronous solitary liver metastasis[J]. Cancer Genomics Proteomics, 2019, 16(6): 583-592. [21] Kumamoto K, Nakachi Y, Mizuno Y, et al. Expressions of 10 genes as candidate predictors of recurrence in stage III colon cancer patients receiving adjuvant oxaliplatinbased chemotherapy[J]. Oncol Lett, 2019, 18(2): 1388-1394. [22] Zhao ZW, Fan XX, Yang LL, et al. The identification of a common different gene expression signature in patients with colorectal cancer [J]. Math Biosci Eng, 2019, 16(4): 2942-2958. [23] Mo SB, Dai WX, Xiang WQ, et al. Prognostic and predictive value of an autophagy-related signature for early relapse in stages I-III colon cancer [J]. Carcinogenesis, 2019, 40(7): 861-870. [24] Wang XJ, Zeng B, Lin S, et al. An integrated miRNA-lncRNA signature predicts the survival of stage II colon cancer [J]. Ann Clin Lab Sci, 2019, 49(6): 730-739. [25] Yang H, Liu H, Lin HC, et al. Association of a novel seven-gene expression signature with the disease prognosis in colon cancer patients [J]. Aging(Albany NY), 2019, 11(19): 8710-8727. [26] Lauss M, Kriegner A, Vierlinger K, et al. Characterization of the drugged human genome [J]. Pharmacogenomics, 2007, 8(8): 1063-1073. [27] Nguyen TT, Ung TT, Kim NH, et al. Role of bile acids in colon carcinogenesis [J]. World J Clin Cases, 2018, 6(13): 577-588. [28] Yan L, Gong YZ, Shao MN, et al. Distinct diagnostic and prognostic values of γ-aminobutyric acid type A receptor family genes in patients with colon adenocarcinoma [J]. Oncol Lett, 2020, 20(1): 275-291. [29] Liu B, Pan SM, Xiao Y, et al. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway [J]. J Exp Clin Cancer Res, 2018, 37: 316. doi:10.1186/s13046-018-0994-x. [30] Jiang D, Jin M, Ye D, et al. Polymorphisms of a novel long non-coding RNA RP11-108K3.2 with colorectal cancer susceptibility and their effects on its expression [J]. Int J Biol Markers, 2020, 35(1): 3-9. [31] Zhou W, Pan B, Liu L. Integrated bioinformatics analysis revealing independent prognostic long non-coding RNAs DNAH17-AS1 and RP11-400N13.2 and their potential oncogenic roles in colorectal cancer [J]. Oncol Lett, 2019, 18(4): 3705-3715. |
[1] | 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84. |
[2] | 覃超群,黄斌,阳芳,王昌明,肖影,黄汉灿,李丽英,高枫. GSK3β/eEF2K信号通过调控自噬参与肺成纤维细胞诱导分化[J]. 山东大学学报 (医学版), 2022, 60(5): 8-15. |
[3] | 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49. |
[4] | 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82. |
[5] | 冯鑫鑫,韩波,张丽,马孟洁,陈思宇. 长链非编码RNA NONHSAT247814.1在18例儿童心肌炎中的表达及体外细胞实验观察[J]. 山东大学学报 (医学版), 2022, 60(10): 27-32. |
[6] | 马燕燕,龚瑶琴. 人脑类器官在神经发育疾病研究中的应用[J]. 山东大学学报 (医学版), 2021, 59(9): 22-29. |
[7] | 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9. |
[8] | 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84. |
[9] | 米琦,史爽,李娟,李培龙,杜鲁涛,王传新. 膀胱癌circRNAs介导的ceRNA网络及预后评估模型的构建[J]. 山东大学学报 (医学版), 2021, 59(6): 94-102. |
[10] | 张明明,高伟,崔佳,霍丽静,胡晴川,李伟皓,王超. miR-33a在稳定型心绞痛患者血清中的表达及意义[J]. 山东大学学报 (医学版), 2021, 59(6): 64-70. |
[11] | 张学丽, 郑璐, 王瑜, 王康, 闫素华. 沉默LncRNA H19通过调节神经生长因子抑制心肌梗死后交感神经重构[J]. 山东大学学报 (医学版), 2021, 59(5): 73-81. |
[12] | 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39. |
[13] | 王凯. 病毒疫苗的研发现状及展望[J]. 山东大学学报 (医学版), 2021, 59(5): 8-14. |
[14] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
[15] | 张小红,周云,杜秋莹,任慧欣,王超群. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报 (医学版), 2021, 59(4): 28-34. |
|