山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (4): 6-11.doi: 10.6040/j.issn.1671-7554.0.2014.826
朱晓东, 夏同良, 姚庆宇, 李昊元, 王本琳, 倪石磊, 王建刚, 李新钢, 苏万东
ZHU Xiaodong, XIA Tongliang, YAO Qingyu, LI Haoyuan, WANG Benlin, NI Shilei, WANG Jiangang, LI Xingang, SU Wandong
摘要: 目的 以聚己内酯/外消旋聚乳酸(PCL/PDLLA)为载体材料,制作安全有效的载有7-乙基-10-羟基喜树碱(SN-38)的缓释系统,评价对U-251胶质瘤细胞的抗肿瘤效果.方法 通过电纺丝方法制作SN-38 -PCL/PDLLA纺丝膜,采用差示扫描热分析法 (DSC)及傅立叶转换红外线光谱(FTIR)分析SN-38在载药聚合物纤维中的状态;采用接触角测量评价载药纤维的亲疏水性;在体外观察不同材料纤维的药物释放速率及对U-251胶质瘤细胞的抑制作用.结果 载药纺丝膜形态均一,在体外实验中均表现出一定的持续抑制胶质瘤细胞的能力,由于载药量的不同,表现出不同的释放时间.其中2%载药的静电纺丝膜表现出稳定、持续的抗肿瘤活性,突释不明显.结论 应用PCL/PDLLA制备搭载SN-38的缓释系统是可行的,适当提高载药量可以增加药物释放时间.
中图分类号:
[1] Allhenn D, Boushehri MA, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas[J]. Int J Pharm, 2012, 436(1-2):299-310. [2] Ni S, Fan X, Wang J, et al. Biodegradable implants efficiently deliver combination of paclitaxel and temozolomide to glioma C6 cancer cells in vitro[J]. Ann Biomed Eng, 2014, 42(1):214-221. [3] Ma YC, Wang JX, Tao W, et al. Polyphosphoester-based nanoparticles with viscous flow core enhanced therapeutic efficacy by improved intracellular drug release[J]. ACS Appl Mater Interfaces, 2014, 6(18):16174-16181. [4] Yee-Shuan L, Treena LA. Electrospun nanofibrous materials for neural tissue engineering[J]. Polymers, 2011, 3: 413-426 [5] Kim MS, Jun I, Shin YM, et al. The development of genipin-crosslinked poly(caprolactone) (PCL)/gelatin nanofibers for tissue engineering applications[J]. Macromol Biosci, 2010, 10(1):91-100. [6] Vangara KK, Ali HI, Lu D, et al. SN-38-cyclodextrin complexation and its influence on the solubility, stability, and in vitro anticancer activity against ovarian cancer[J]. AAPS Pharm Sci Tech, 2014, 15(2):472-482. [7] Meng ZX, Zheng W, Li L, et al. Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning[J]. Materials Science and Engineering: C, 2010, 30(7):1014-1021. [8] Manfred W, Dana CH, Enoch B, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma[J]. Neuro Oncol, 2003, 5(2):79-88. [9] McGovern PC, Lautenbach E, Brennan PJ, et al. Risk factors for postcraniotomy surgical site infection after 1,3-bis (2-chloroethyl)-1-nitrosourea (Gliadel) wafer placement[J]. Clin Infect Dis, 2003, 36(6):759-765. [10] Xie J, Macewan MR, Willerth SM, et al. Conductive core-sheath nanofibers and their potential application in neural tissue engineering[J]. Adv Funct Mater, 2009, 19(14):2312-2318. [11] Mobasseri SA, Faroni A, Minogue BM, et al. Polymer scaffold with preferential parallel grooves enhance nerve regeneration[J]. Tissue Eng Part A, 2015, 21(5-6):1152-1162. [12] Sun M, Kingham PJ, Reid AJ, et al. In vitro and in vivo testing of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit[J]. J Biomed Mater Res A, 2010, 93(4):1470-1481. [13] Kasai H, Murakami T, Ikuta Y, et al. Creation of pure nanodrugs and their anticancer properties[J]. Angew Chem Int Ed Engl, 2012, 51(41):10315-10318. [14] Zhang H, Wang J, Mao W, et al. Novel SN38 conjugate-forming nanoparticles as anticancer prodrug:in vitro and in vivo studies[J]. J Control Release, 2013, 166(2):147-158. [15] Sepehri N, Rouhani H, Tavassolian F, et al. SN38 polymeric nanoparticles: in vitro cytotoxicity and in vivo antitumor efficacy in xenograft balb/c model with breast cancer versus irinotecan[J]. Int J Pharm, 2014, 471(1-2):485-497. [16] Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation[J]. J Control Release, 2005, 105(1-2):43-51. [17] Yohe ST, Herrera VL, Colson YL, et al. 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells[J]. J Control Release, 2012, 162(1):92-101. [18] Xia T, Ni S, Li X, et al. Sustained delivery of dbcAMP by poly(propylene carbonate) micron fibers promotes axonal regenerative sprouting and functional recovery after spinal cord hemisection[J]. Brain Res, 2013, 1538:41-50. |
[1] | 王琳琳 孙美丽 孙玉萍 张楠 刘传勇. 中心体α-微管蛋白、γ-微管蛋白在脑胶质瘤中的表达及其与Survivin表达的相关性研究[J]. 山东大学学报(医学版), 2209, 47(6): 103-. |
[2] | 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73. |
[3] | 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87. |
[4] | 陈安静,张训. 靶向小类泛素化修饰的胶质瘤治疗新策略[J]. 山东大学学报 (医学版), 2020, 1(8): 88-94. |
[5] | 江涛. 类脑智能在脑科学的前沿应用[J]. 山东大学学报 (医学版), 2020, 1(8): 10-13. |
[6] | 徐继禧,陈伟健. 髓内弥漫性中线胶质瘤伴H3 K27M突变1例[J]. 山东大学学报 (医学版), 2020, 1(7): 96-101. |
[7] | 王超超,田海龙,姜慧峰,郭文强,王志刚. 荧光素钠“黄荧光”导航辅助高级别胶质瘤手术治疗的临床意义[J]. 山东大学学报(医学版), 2017, 55(11): 32-37. |
[8] | 徐延杰,崔谊,李红霞,史文琦,李福艳,王建震,曾庆师. X线照射对U87胶质瘤多细胞球体MMP-2活性及Cho/Cr的影响[J]. 山东大学学报(医学版), 2016, 54(4): 6-10. |
[9] | 葛晓燕,刘颖,李怡,王翠兰. 富亮氨酸胶质瘤失活1蛋白抗体阳性相关的边缘性脑炎1例[J]. 山东大学学报(医学版), 2016, 54(10): 92-94. |
[10] | 姚众, 陈为亮, 徐洋洋, 何影, 曲迅, 李新钢. 半乳凝素-9抑制胶质瘤细胞增殖及迁移[J]. 山东大学学报(医学版), 2015, 53(4): 1-5. |
[11] | 邢德广, 马二猛, 王谋龙, 孙中正, 樊明德, 臧贻征, 王成伟. 紫杉醇协同肿瘤坏死因子相关凋亡诱导配体抑制胶质瘤细胞活性的探讨[J]. 山东大学学报(医学版), 2015, 53(4): 12-15. |
[12] | 杨慧, 李万湖, 陈月芹, 郭沐洁, 徐亮, 吴玉芬. 3.0T1H-MRS鉴别高级别胶质瘤与单发性脑转移瘤的价值[J]. 山东大学学报(医学版), 2015, 53(4): 65-70. |
[13] | 张照涛1,张华2,何敬振1,朱建辉3,刘芸1,王建震1,李传福1,曾庆师1. 高场强磁共振波谱观察脑胶质瘤细胞代谢特征[J]. 山东大学学报(医学版), 2014, 52(3): 19-22. |
[14] | 郑帅,许豪,刘华杰,邢毅,许尚臣,庞琦. HMGA1在脑胶质瘤侵袭性及其血管生成中的作用[J]. 山东大学学报(医学版), 2014, 52(2): 78-81. |
[15] | 樊明德1,张源2,苗保旺1,郑鲲鹏1,李科1,王成伟1. Nod样受体热蛋白结构域相关蛋白3在人脑胶质瘤中的表达[J]. 山东大学学报(医学版), 2013, 51(4): 51-54. |
|