山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (2): 43-47.doi: 10.6040/j.issn.1671-7554.0.2014.543
胡芳志1, 张正军2, 耿厚法2, 梁秋华2, 孙琳2
HU Fangzhi1, ZHANG Zhengjun2, GENG Houfa2, LIANG Qiuhua2, SUN Lin2
摘要: 目的 采用氢质子磁共振波谱(1H-MRS)技术检测2型糖尿病(T2DM)患者脑内基底节、半卵圆中心区域脑组织代谢改变,表明尿微量白蛋白是脑组织损害的早期标志.方法 初诊T2DM患者61例,根据尿微量白蛋白排泄率(UAER)分为正常微量白蛋白尿组(DM组,UAER<20 μg/min,n=29)和微量白蛋白尿组(DA组,20 μg/min≤UAER<200 μg/min,n=32), 同时选取20名健康志愿者为正常对照组(HC组).所有受试者行常规磁共振(MRI)以及1H-MRS检查.结果 基底节区:DA组NAA/Cr比值较DM组、HC组明显降低(P<0.05),DM组NAA/Cr比值较HC组明显降低(P<0.05),DA组Cho/Cr比值较HC组明显升高(P<0.05).半卵圆中心区:DA组NAA/Cr比值明显低于HC组(P<0.05),DM组Cho/Cr比值较HC组明显升高(P<0.05),DA组MI/Cr比值较DM组、HC组明显升高(P<0.05).DA组基底节区NAA/Cr值与UAER水平呈负相关性(r=-0.768, P<0.05).结论 尿微量白蛋白升高的T2DM患者可更容易合并脑组织损伤.
中图分类号:
[1] Futrakul N, Sridama V, Futrakul P. Microalbuminuria-a biomarker of renal microvascular disease[J]. Ren Fail, 2009, 31(2): 140-143. [2] Strachan MW, Frier BM, Deary LJ. Type 2 diabetes and cognitive impairment[J]. Diabet Med, 2003, 20(1): 1-2. [3] Mogi M, Horiuchi M. Neurovascular coupling in cognitive impairment associated with diabetes mellitus[J]. Cric J, 2011, 75(5): 1042-1048. [4] Garg JP, Bakris GL. Microalbuminuria: marker of vascular dysfunction, risk factor for cardiovascular disease[J]. Vasc Med, 2002, 7(1): 35-43. [5] Cao JJ, Barzilay JI, Peterson D, et al. The association of microalbuminuria with clinical cardiovascular disease and subclinical atherosclerosis in the elderly: the Cardiovascular Health Study[J]. Atherosclerosis, 2006, 187(2): 372-377. [6] Wang Y, Yuan A, Yu C. Correlation between microalbuminuria and cardiovascular events[J]. Int J Clin Exp Med, 2013, 6(10): 973-978. [7] Wada M, Nagasawa H, Kurita K, et al. Microalbuminuria is a risk factor for cerebral small vessel disease in community-based elderly subjects[J]. J Neurol Sci, 2007, 255(1-2): 27-34. [8] Currie S, Hadjivassiliou M, Craven IJ, et al. Magnetic resonance spectroscopy of the brain[J]. Postgrad Med J, 2013, 89(1048): 94-106. [9] Zhang M, Sun X, Zhang Z, Brain metabolite changes in patients with type 2 diabetes and cerebral infarction using proton magnetic resonance spectroscopy[J]. Int J Neurosci, 2014, 124(1): 37-41. [10] Alberti KG, Zimmet PZ. Definition, diagnosis, and classification of diabetes mellitus and its complications, part 2: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J]. Diabet Med, 1998, 15(7): 539-553. [11] Hanefeld M, Koehler C, Fuecker K, et al. Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose: the risk factor in impaired glucose tolerance for atherosclerosis and diabetes study[J]. Diabetes Care, 2003, 26(3): 868-874. [12] Nwose EU, Richards RS, Bwititi PT. Cardiovascular risks in prediabetes: preliminary data on "vasculopathy triad"[J]. N Am J Med Sci, 2014, 6(7): 328-332. [13] Vermeer SE, Sandee W, Algra A, et al. Impaired glucose tolerance increases stroke risk in nondiabetic patients with transient ischemic attack or minor ischemic stroke[J]. Stroke, 2006, 37(6): 1413-1417. [14] O'Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy[J]. Hypertension, 2005, 46(1): 200-204. [15] Bouchi R, Babazono T, Nyumura I, et al. Is reduced estimated glomerular filtration rate a risk factor for stroke in patients with type 2 diabetes?[J]. Hypertens Res, 2009, 32(5): 381-386. [16] Ito S, Nagasawa T, Abe M, et al. Strain vessel hypothesis: a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk[J]. Hypertens Res, 2009, 32(2): 115-121. [17] Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications[J]. Clin Radiol, 2009, 64(1): 12-21. [18] Paslakis G, Trber F, Roberz J, et al. N-acetyl-aspartate (NAA) as a correlate of pharmacological treatment in psychiatric disorders: A systematic review. Eur Neuropsychopharmacol[J]. Eur Neuropsychopharmacol, 2014, 24(10): 1659-1675. [19] Haratz S, Tanne D. Diabetes, hyperglycemia and the management of cerebrovascular disease[J]. Curr Opin Neurol, 2011, 24(1): 81-88. [20] Evans JL, Goldfine ID, Maddux BA. Oxidative stress and stress activated signaling pathways: a unifying hypothesis of type 2 diabetes[J]. Endocr Rev, 2002, 23(5): 599-622. [21] 黄强, 浦明娟, 刘剑峰, 等. 2型糖尿病尿微量白蛋白、血管内皮功能、超敏C反应蛋白的关系探讨[J].实用医学杂志, 2009, 25(5): 746-748. [22] Hu ZJ, Ren LP, Wang C, et al. Associations between apolipoprotein CIII concentrations and microalbuminuria in type 2 diabetes[J]. Exp Ther Med, 2014, 8(3): 951-956. [23] Overgaard AJ, McGuire JN, Hovind P. Serum amyloid A and C-reactive protein levels may predict microalbuminuria and macroalbuminuria in newly diagnosed type 1 diabetic patients[J]. J Diabetes Complications, 2013, 27(1): 59-63. [24] Moresco RN, Sangoi MB, De Carvalho JA, et al. Diabetic nephropathy: traditional to proteomic markers[J]. Clin Chim Acta, 2013, 421(1): 17-30. [25] Ajilore O, Haroon E, Kumaran S, et al. Measurement of brain metabolites in patients with type 2 diabetes and major depression using proton magnetic resonance spectroscopy[J]. Neuropsychopharmacology, 2007, 32(6):1224-1231. [26] Stromillo ML, Dotti MT, Battaglini M, et al. Structural and metabolic brain abnormalities in preclinical cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy[J]. J Neurol Neurosurg Psychiatry, 2009, 80(1):41-47. [27] Geissler A, Frund R, Scholmerich J, et al. Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton magnetic resonance spectroscopy[J]. Exp Clin Endocrinol Diabetes, 2003, 111(7):421-427. [28] Tong J, Geng H, Zhang Z, et al. Brain metabolite alterations demonstrated by proton magnetic resonance spectroscopy in diabetic patients with retinopathy[J]. Magn Reson Imaging, 2014, 32(8):1037-1042. [29] Saczynski JS, Siggurdsson S, Jonsson PV, et al. Glycemic status and brain injury in older individuals:the age gene/environment susceptibility-Reykjavik study[J]. Diabetes Care, 2009, 32 (9):1608-1613. [30] Patel B, Markus HS. Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker[J]. Int J Stroke, 2011, 6(1):47-59. |
[1] | 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14. |
[2] | 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86. |
[3] | 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11. |
[4] | 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72. |
[5] | 彭力,强晔,赵蕙琛,陈诗鸿,姚伟东,刘元涛. 2型糖尿病患者应用西格列汀的短期疗效及影响因素[J]. 山东大学学报(医学版), 2016, 54(8): 60-63. |
[6] | 林栋,管庆波. 2型糖尿病男性患者血清睾酮水平低下对非酒精性脂肪肝的影响[J]. 山东大学学报(医学版), 2016, 54(7): 33-37. |
[7] | 徐延杰,崔谊,李红霞,史文琦,李福艳,王建震,曾庆师. X线照射对U87胶质瘤多细胞球体MMP-2活性及Cho/Cr的影响[J]. 山东大学学报(医学版), 2016, 54(4): 6-10. |
[8] | 木哈达斯·吐尔逊依明,帕它木·莫合买提,托兰古丽·买买提库尔班. CDKAL1(rs10946398 C/A)基因多态性与2型糖尿病易感性关系Meta分析[J]. 山东大学学报(医学版), 2016, 54(2): 75-85. |
[9] | 于宁,高燕燕,咸玉欣,牛佳鹏,李莉,王静,曹彩霞. 艾塞那肽对2型糖尿病合并非酒精性脂肪肝患者肝脏脂肪含量及血清chemerin水平的影响[J]. 山东大学学报(医学版), 2016, 54(11): 51-55. |
[10] | 张莉,朱惠明,王艳梅,江堤,孙贤久,乐有林. 2型糖尿病患者腹胀与小肠细菌过度生长的关系[J]. 山东大学学报(医学版), 2016, 54(1): 45-47. |
[11] | 刘言训, 刘佳, 张涛, 王璐, 薛付忠, 王萍. 基于纵向监测队列的2型糖尿病与甲状腺结节的关联性[J]. 山东大学学报(医学版), 2015, 53(8): 83-86. |
[12] | 裴蕾蕾, 孙中华, 李哲, 赵文萍. 西格列汀联合大剂量胰岛素治疗2型糖尿病的临床观察[J]. 山东大学学报(医学版), 2015, 53(2): 39-42. |
[13] | 李方. 可溶性晚期糖基化终末产物受体及其基因多态性与2型糖尿病的易感性分析[J]. 山东大学学报(医学版), 2015, 53(12): 57-61. |
[14] | 秦祥德, 杨春云, 张媛, 倪一虹, 于超, 冯晓丽, 徐成伟. 2型糖尿病合并下肢骨折患者凝血分子标志物的变化及其与血栓形成的关系[J]. 山东大学学报(医学版), 2015, 53(11): 55-58. |
[15] | 李寒冰, 高燕燕, 李莉, 曹彩霞, 咸玉欣, 王静, 牛佳鹏. 兰索拉唑与艾塞那肽联用对2型糖尿病患者胃泌素及胃泌酸调节素的影响[J]. 山东大学学报(医学版), 2015, 53(11): 64-68. |
|