您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (8): 74-80.doi: 10.6040/j.issn.1671-7554.0.2020.0601

• 脑科学与类脑智能研究专题 • 上一篇    下一篇

脑胶质母细胞瘤模型研究概况及类脑模型的研发应用

王剑1,2,3,*(),周文婧1,2,薛知易1,2,刘晓菲1,2   

  1. 1. 山东大学齐鲁医院神经外科,山东大学脑与类脑科学研究院, 山东 济南 250012
    2. 山东省脑功能重构重点实验室, 山东 济南 250012
    3. 挪威卑尔根大学生物医学系, 西部郡 卑尔根 5009
  • 收稿日期:2020-04-15 出版日期:2020-08-01 发布日期:2020-08-07
  • 通讯作者: 王剑 E-mail:jian.wang@sdu.edu.cn
  • 作者简介:王剑,教授,博士研究生导师,泰山学者特聘专家,挪威卑尔根大学教授、博士研究生导师。现任山东大学脑与类脑科学研究院常务副院长、山东大学脑科学研究所常务副所长、中国-挪威脑科学研究中心常务副主任。兼任山东大学国际合作联络教授、中国医师协会脑胶质瘤专委会基础研究与转化专委会委员、中国研究型医院脑功能研究与转化专业委员会常委、美国癌症研究协会和国际干细胞研究学会会员。主持国家自然科学基金面上项目、山东省重大科技创新工程项目、山东省自然科学基金等课题及挪威卑尔根大学及政府多项科研项目。在《EMBO Molecular Medicine》《Brain》、《Autophagy》《Clinical Cancer Research》《Oncogene》等期刊发表SCI论文70余篇,培养博士和硕士研究生20余名。先后受邀在美国、法国、韩国、日本等多个国家举办的国际性大会上做学术报告
  • 基金资助:
    国家自然科学基金面上项目(81972351);山东省重大科技创新工程项目(2017CXGC1502);山东省自然科学基金面上项目(ZR2017MH116);山东省泰山学者基金(tshw201502056)

Overview of glioblastoma models and development and application of brain organoids

Jian WANG1,2,3,*(),Wenjing ZHOU1,2,Zhiyi XUE1,2,Xiaofei LIU1,2   

  1. 1. Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
    2. Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, Shandong, China
    3. Department of Biomedicine, University of Bergen, Bergen 5009, Vestland, Norway
  • Received:2020-04-15 Online:2020-08-01 Published:2020-08-07
  • Contact: Jian WANG E-mail:jian.wang@sdu.edu.cn

摘要:

胶质母细胞瘤是恶性程度最高的胶质瘤,建立针对胶质母细胞瘤弥漫性、浸润性生长特征的实验模型,是基础研究的核心。本文系统梳理了近年来国内外有关脑胶质母细胞瘤体内和体外研究模型的建立方法、应用概况及局限性,指出现有的脑胶质母细胞瘤研究模型虽在不断改进与完善,且在某些方面推进了该病的基础研究,但却无法模拟人体脑胶质母细胞瘤生长的复杂环境,揭示该病的动态发病机制及可能的药物作用途径。课题组经过多年的探索,研发了类脑器官模型,该模型可模拟大鼠体内大脑的发育过程,并与颅脑胶质母细胞瘤模型建立了共培养系统,能实现体外直观的实时观察肿瘤细胞的侵袭特征,为进一步研究脑胶质母细胞瘤的发病机制奠定了基础。并可从中分选出侵袭性肿瘤细胞与非侵袭性肿瘤细胞,进行下一步基因组学的系统分析,从而有望筛选出靶向侵袭性胶质母细胞瘤细胞的药物。

关键词: 胶质母细胞瘤, 离体模型, 类脑器官, 类肿瘤球, 共培养

Abstract:

Glioblastoma (GBM) is the most common primary brain tumor with high morbidity and high mortality. The primary goal of researches on GBM is to establish models to recapitulate the tumor invasive phenotype. In this review, we have systematically summarized the in vitro and in vivo models in GBM study by discussing the establishment and applications as well as their limitations. We acknowledge the development of various model systems in recent years which has substantially improved GBM research activities. However, largely due to difficulties of recapitulating the complicated microenvironment in GBM, it remains challenging to explore the tumor developmental mechanism and candidate drug efficacy in the treatment. Our team has extensively studied GBM for many years and established an ex-vivo model using rat brain organoids. Extensive data show that the model can highly mimic the process of brain development. Together with GBM patient-derived tumor spheroids and brain organoids, we have established co-culture model systems in order to in real time study the invasive GBM, which may fundamentally help us to understand the tumor development. Moreover, using the system, we are able to sort the invasive tumor cells from non-invasive tumor cells and analyze single cell RNA sequences to identify key molecules, which will be possible in turn to offer us new therapeutic candidates potentially targeting GBM.

Key words: Glioblastoma, Ex-vivo model, Brain organoid, Tumor spheroid, Co-culture

中图分类号: 

  • R739.4

图1

鼠类脑器官BO模型建立流程图以及鼠类脑器官BO与患者来源3D类肿瘤球共培养系统建立模式图"

1 Gusyatiner O , Hegi ME . Glioma epigenetics: from subclassification to novel treatment options[J]. Semin Cancer Biol, 2018, 51: 50- 58.
doi: 10.1016/j.semcancer.2017.11.010
2 Wirsching HG , Galanis E , Weller M . Glioblastoma[J]. Handb Clin Neurol, 2016, 134: 381- 397.
doi: 10.1016/B978-0-12-802997-8.00023-2
3 Lapointe S , Perry A , Butowski NA . Primary brain tumours in adults[J]. Lancet, 2018, 392 (10145): 432- 446.
doi: 10.1016/S0140-6736(18)30990-5
4 Bush NA , Chang SM , Berger MS . Current and future strategies for treatment of glioma[J]. Neurosurg Rev, 2017, 40 (1): 1- 14.
doi: 10.1007/s10143-016-0709-8
5 Tandon N , Thakkar KN , LaGory EL , et al. Generation of stable expression mammalian cell lines using lentivirus[J]. Bio Protoc, 2018, 8 (21): e3073.
doi: 10.21769/BioProtoc.3073
6 Damian M , Porteus MH . A crisper look at genome editing: RNA-guided genome modification[J]. Mol Ther, 2013, 21 (4): 720- 722.
doi: 10.1038/mt.2013.46
7 Bhere D , Tamura K , Wakimoto H , et al. MicroRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis[J]. Neruro Oncol, 2018, 20 (2): 215- 224.
doi: 10.1093/neuonc/nox138
8 Tasdemir N , Bossart EA , Li Z , et al. Comprehensive phenotypic characterization of human invasive lobular carcinoma cell lines in 2D and 3D cultures[J]. Cancer Res, 2018, 78 (21): 6209- 6222.
doi: 10.1158/0008-5472.CAN-18-1416
9 Wang J , Miletic H , Sakariassen PØ , et al. A reproducible brain tumor model established from human glioblastoma biopsies[J]. BMC Cancer, 2009, 9: 465.
doi: 10.1186/1471-2407-9-465
10 Bespalov VG , Alexandrov VA , Vysochina GI , et al. The inhibiting activity of meadowsweet extract on neurocarcinogenesis induced transplacentally in rats by ethylnitrosourea[J]. J Neurooncol, 2017, 131 (3): 459- 467.
doi: 10.1007/s11060-016-2323-6
11 de Gooijer MC , Guillén Navarro M , Bernards R , et al. An experimenter's guide to glioblastoma invasion pathways[J]. Trends Mol Med, 2018, 24 (9): 763- 780.
doi: 10.1016/j.molmed.2018.07.003
12 Heinrich MA , Bansal R , Lammers T , et al. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics[J]. Adv Mater, 2019, 31 (14): e1806590.
doi: 10.1002/adma.201806590
13 Singer O , Tiscornia G , Ikawa M , et al. Rapid generation of knockdown transgenic mice by silencing lentiviral vectors[J]. Nat Protoc, 2006, 1 (1): 286- 292.
doi: 10.1038/nprot.2006.44
14 Lusis AJ , Yu J , Wang SS . The problem of passenger genes in transgenic mice[J]. Arterioscler Thromb Vasc Biol, 2007, 27 (10): 2100- 2103.
doi: 10.1161/ATVBAHA.107.147918
15 Ohgaki H , Kleihues P . The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19 (4): 764- 772.
doi: 10.1158/1078-0432.CCR-12-3002
16 Ding H , Roncari L , Shannon P , et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas[J]. Cancer Res, 2001, 61 (9): 3826- 3836.
17 Reilly KM , Loisel DA , Bronson RT , et al. Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects[J]. Nat Genet, 2000, 26 (1): 109- 113.
doi: 10.1038/79075
18 Uhrbom L , Hesselager G , Ostman A , et al. Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells[J]. Int J Cancer, 2000, 85 (3): 398- 406.
doi: 10.1002/(SICI)1097-0215(20000201)85:3<398::AID-IJC17>3.0.CO;2-L
19 Bruggeman SW , Hulsman D , Tanger E , et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma[J]. Cancer Cell, 2007, 12 (4): 328- 341.
doi: 10.1016/j.ccr.2007.08.032
20 Uhrbom L , Kastemar M , Johansson FK , et al. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis[J]. Cancer Res, 2005, 65 (6): 2065- 2069.
doi: 10.1158/0008-5472.CAN-04-3588
21 Verhaak RG , Hoadley KA , Purdom E , et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[J]. Cancer Cell, 2010, 17 (1): 98- 110.
doi: 10.1016/j.ccr.2009.12.020
22 Chakravarty D , Pedraza AM , Cotari J , et al. EGFR and PDGFRA co-expression and heterodimerization in glioblastoma tumor sphere lines[J]. Sci Rep, 2017, 7 (1): 9043.
doi: 10.1038/s41598-017-08940-9
23 Salsman J , Dellaire G . Precision genome editing in the CRISPR Era[J]. Biochem Cell Biol, 2017, 95 (2): 187- 201.
24 Schold SC Jr , Friedman HS . Human brain tumor xenografts[J]. Prog Exp Tumor Res, 1984, 28: 18- 31.
doi: 10.1159/000408235
25 Festing MF , May D , Connors TA , et al. An athymic nude mutation in the rat[J]. Nature, 1978, 274 (5669): 365- 366.
doi: 10.1038/274365a0
26 Helson L , Das SK , Hajdu SI . Human neuroblastoma in nude mice[J]. Cancer Res, 1975, 35 (9): 2594- 2599.
27 Povlsen CO , Visfeldt J , Rygaard J , et al. Growth patterns and chromosome constitutions of human malignant tumors after long-term serial transplantation in nude mice[J]. Acta Pathol Microbiol Scand A, 1975, 83 (6): 709- 716.
28 Mahesparan R , Read TA , Lund-Johansen M , et al. Expression of extracellular matrix components in a highly infiltrative in vivo glioma model[J]. Acta Neuropathol, 2003, 105 (1): 49- 57.
doi: 10.1007/s00401-002-0610-0
29 Engebraaten O , Hjortland GO , Hirschberg H , et al. Growth of precultured human glioma specimens in nude rat brain[J]. J Neurosurg, 1999, 90 (1): 125- 132.
doi: 10.3171/jns.1999.90.1.0125
30 Beck B , Blanpain C . Unravelling cancer stem cell potential[J]. Nat Rev Cancer, 2013, 13 (10): 727- 738.
doi: 10.1038/nrc3597
31 Rubio-Manzanares Dorado M , Marín Gómez LM , Aparicio Sánchez D , et al. Translational pancreatic cancer research: a comparative study on patient- derived xenograft models[J]. World J Gastroenterol, 2018, 24 (7): 794- 809.
doi: 10.3748/wjg.v24.i7.794
32 Jung J . Human tumor xenograft models for preclinical assessment of anticancer drug development[J]. Toxicol Res, 2014, 30 (1): 1- 5.
doi: 10.5487/TR.2014.30.1.001
33 Siolas D , Hannon GJ . Patient derived tumor xenografts: transforming clinical samples into mouse models[J]. Cancer Res, 2013, 73 (17): 5315- 5319.
doi: 10.1158/0008-5472.CAN-13-1069
34 Ohgaki H , Kleihues P . The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19 (4): 764- 772.
doi: 10.1158/1078-0432.CCR-12-3002
35 Bjerkvig R , Laerum OD , Mella O . Glioma cell interactions with fetal rat brain aggregates in vitro and with brain tissue in vivo[J]. Cancer Res, 1986, 46 (8): 4071- 4079.
36 Ying QL , Stavridis M , Griffiths D , et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture[J]. Nat Biotechnol, 2003, 21 (2): 183- 186.
doi: 10.1038/nbt780
37 Benito-Kwiecinski S , Lancaster MA . Brain Organoids: Human neurodevelopment in a dish[J]. Cold Spring Harb Perspect Biol, 2019, a035709.
doi: 10.1101/cshperspect.a035709
38 Quadrato G , Nguyen T , Macosko EZ , et al. Cell diversity and network dynamics in photosensitive human brain organoids[J]. Nature, 2017, 545 (7652): 48- 53.
doi: 10.1038/nature22047
39 Kikuchi T , Morizane A , Doi D , et al. Human iPS cell-derived dopaminergic neurons function in a primate parkinson's disease model[J]. Nature, 2017, 548 (7669): 592- 596.
doi: 10.1038/nature23664
40 Bian S , Repic M , Guo Z , et al. Genetically engineered cerebral organoids model brain tumor formation[J]. Nat Methods, 2018, 15 (8): 631- 639.
doi: 10.1038/s41592-018-0070-7
41 Di Lullo E , Kriegstein AR . The use of brain organoids to investigate neural development and disease[J]. Nat Rev Neurosci, 2017, 18 (10): 573- 584.
doi: 10.1038/nrn.2017.107
42 Camp JG , Badsha F , Florio M , et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development[J]. Proc Natl Acad Sci USA, 2015, 112 (51): 15672- 15677.
doi: 10.1073/pnas.1520760112
43 Pasca SP . The rise of three-dimensional human brain cultures[J]. Nature, 2018, 553 (7689): 437- 445.
doi: 10.1038/nature25032
44 Qian Xuyu , Nguyen Ha Nam , Song Mingxi M , et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165 (5): 1238- 1254.
doi: 10.1016/j.cell.2016.04.032
45 Gately L , McLachlan SA , Dowling A , et al. Life beyond a diagnosis of glioblastoma: a system review of the literature[J]. J Cancer Surviv, 2017, 11 (4): 447- 452.
46 Lamb J , Crawford ED , Peck D , et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006, 313 (5795): 1929- 1935.
doi: 10.1126/science.1132939
47 Michnick SW . The connectivity map[J]. Nat Chem Biol, 2006, 2 (12): 663- 664.
doi: 10.1038/nchembio1206-663
[1] 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 58(8): 67-73.
[2] 徐继禧,陈伟健. 髓内弥漫性中线胶质瘤伴H3 K27M突变1例[J]. 山东大学学报 (医学版), 2020, 58(7): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 58(7): 1 -6 .
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 58(7): 7 -14 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 15 -23 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 58(7): 24 -31 .
[5] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 32 -37 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 38 -46 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 58(7): 47 -52 .
[8] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 58(7): 53 -59 .
[9] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 58(7): 60 -66 .
[10] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 58(7): 67 -71 .