山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (8): 74-80.doi: 10.6040/j.issn.1671-7554.0.2020.0601
王剑1,2,3,*(),周文婧1,2,薛知易1,2,刘晓菲1,2
Jian WANG1,2,3,*(),Wenjing ZHOU1,2,Zhiyi XUE1,2,Xiaofei LIU1,2
摘要:
胶质母细胞瘤是恶性程度最高的胶质瘤,建立针对胶质母细胞瘤弥漫性、浸润性生长特征的实验模型,是基础研究的核心。本文系统梳理了近年来国内外有关脑胶质母细胞瘤体内和体外研究模型的建立方法、应用概况及局限性,指出现有的脑胶质母细胞瘤研究模型虽在不断改进与完善,且在某些方面推进了该病的基础研究,但却无法模拟人体脑胶质母细胞瘤生长的复杂环境,揭示该病的动态发病机制及可能的药物作用途径。课题组经过多年的探索,研发了类脑器官模型,该模型可模拟大鼠体内大脑的发育过程,并与颅脑胶质母细胞瘤模型建立了共培养系统,能实现体外直观的实时观察肿瘤细胞的侵袭特征,为进一步研究脑胶质母细胞瘤的发病机制奠定了基础。并可从中分选出侵袭性肿瘤细胞与非侵袭性肿瘤细胞,进行下一步基因组学的系统分析,从而有望筛选出靶向侵袭性胶质母细胞瘤细胞的药物。
中图分类号:
1 |
Gusyatiner O , Hegi ME . Glioma epigenetics: from subclassification to novel treatment options[J]. Semin Cancer Biol, 2018, 51: 50- 58.
doi: 10.1016/j.semcancer.2017.11.010 |
2 |
Wirsching HG , Galanis E , Weller M . Glioblastoma[J]. Handb Clin Neurol, 2016, 134: 381- 397.
doi: 10.1016/B978-0-12-802997-8.00023-2 |
3 |
Lapointe S , Perry A , Butowski NA . Primary brain tumours in adults[J]. Lancet, 2018, 392 (10145): 432- 446.
doi: 10.1016/S0140-6736(18)30990-5 |
4 |
Bush NA , Chang SM , Berger MS . Current and future strategies for treatment of glioma[J]. Neurosurg Rev, 2017, 40 (1): 1- 14.
doi: 10.1007/s10143-016-0709-8 |
5 |
Tandon N , Thakkar KN , LaGory EL , et al. Generation of stable expression mammalian cell lines using lentivirus[J]. Bio Protoc, 2018, 8 (21): e3073.
doi: 10.21769/BioProtoc.3073 |
6 |
Damian M , Porteus MH . A crisper look at genome editing: RNA-guided genome modification[J]. Mol Ther, 2013, 21 (4): 720- 722.
doi: 10.1038/mt.2013.46 |
7 |
Bhere D , Tamura K , Wakimoto H , et al. MicroRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis[J]. Neruro Oncol, 2018, 20 (2): 215- 224.
doi: 10.1093/neuonc/nox138 |
8 |
Tasdemir N , Bossart EA , Li Z , et al. Comprehensive phenotypic characterization of human invasive lobular carcinoma cell lines in 2D and 3D cultures[J]. Cancer Res, 2018, 78 (21): 6209- 6222.
doi: 10.1158/0008-5472.CAN-18-1416 |
9 |
Wang J , Miletic H , Sakariassen PØ , et al. A reproducible brain tumor model established from human glioblastoma biopsies[J]. BMC Cancer, 2009, 9: 465.
doi: 10.1186/1471-2407-9-465 |
10 |
Bespalov VG , Alexandrov VA , Vysochina GI , et al. The inhibiting activity of meadowsweet extract on neurocarcinogenesis induced transplacentally in rats by ethylnitrosourea[J]. J Neurooncol, 2017, 131 (3): 459- 467.
doi: 10.1007/s11060-016-2323-6 |
11 |
de Gooijer MC , Guillén Navarro M , Bernards R , et al. An experimenter's guide to glioblastoma invasion pathways[J]. Trends Mol Med, 2018, 24 (9): 763- 780.
doi: 10.1016/j.molmed.2018.07.003 |
12 |
Heinrich MA , Bansal R , Lammers T , et al. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics[J]. Adv Mater, 2019, 31 (14): e1806590.
doi: 10.1002/adma.201806590 |
13 |
Singer O , Tiscornia G , Ikawa M , et al. Rapid generation of knockdown transgenic mice by silencing lentiviral vectors[J]. Nat Protoc, 2006, 1 (1): 286- 292.
doi: 10.1038/nprot.2006.44 |
14 |
Lusis AJ , Yu J , Wang SS . The problem of passenger genes in transgenic mice[J]. Arterioscler Thromb Vasc Biol, 2007, 27 (10): 2100- 2103.
doi: 10.1161/ATVBAHA.107.147918 |
15 |
Ohgaki H , Kleihues P . The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19 (4): 764- 772.
doi: 10.1158/1078-0432.CCR-12-3002 |
16 | Ding H , Roncari L , Shannon P , et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas[J]. Cancer Res, 2001, 61 (9): 3826- 3836. |
17 |
Reilly KM , Loisel DA , Bronson RT , et al. Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects[J]. Nat Genet, 2000, 26 (1): 109- 113.
doi: 10.1038/79075 |
18 |
Uhrbom L , Hesselager G , Ostman A , et al. Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells[J]. Int J Cancer, 2000, 85 (3): 398- 406.
doi: 10.1002/(SICI)1097-0215(20000201)85:3<398::AID-IJC17>3.0.CO;2-L |
19 |
Bruggeman SW , Hulsman D , Tanger E , et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma[J]. Cancer Cell, 2007, 12 (4): 328- 341.
doi: 10.1016/j.ccr.2007.08.032 |
20 |
Uhrbom L , Kastemar M , Johansson FK , et al. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis[J]. Cancer Res, 2005, 65 (6): 2065- 2069.
doi: 10.1158/0008-5472.CAN-04-3588 |
21 |
Verhaak RG , Hoadley KA , Purdom E , et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[J]. Cancer Cell, 2010, 17 (1): 98- 110.
doi: 10.1016/j.ccr.2009.12.020 |
22 |
Chakravarty D , Pedraza AM , Cotari J , et al. EGFR and PDGFRA co-expression and heterodimerization in glioblastoma tumor sphere lines[J]. Sci Rep, 2017, 7 (1): 9043.
doi: 10.1038/s41598-017-08940-9 |
23 | Salsman J , Dellaire G . Precision genome editing in the CRISPR Era[J]. Biochem Cell Biol, 2017, 95 (2): 187- 201. |
24 |
Schold SC Jr , Friedman HS . Human brain tumor xenografts[J]. Prog Exp Tumor Res, 1984, 28: 18- 31.
doi: 10.1159/000408235 |
25 |
Festing MF , May D , Connors TA , et al. An athymic nude mutation in the rat[J]. Nature, 1978, 274 (5669): 365- 366.
doi: 10.1038/274365a0 |
26 | Helson L , Das SK , Hajdu SI . Human neuroblastoma in nude mice[J]. Cancer Res, 1975, 35 (9): 2594- 2599. |
27 | Povlsen CO , Visfeldt J , Rygaard J , et al. Growth patterns and chromosome constitutions of human malignant tumors after long-term serial transplantation in nude mice[J]. Acta Pathol Microbiol Scand A, 1975, 83 (6): 709- 716. |
28 |
Mahesparan R , Read TA , Lund-Johansen M , et al. Expression of extracellular matrix components in a highly infiltrative in vivo glioma model[J]. Acta Neuropathol, 2003, 105 (1): 49- 57.
doi: 10.1007/s00401-002-0610-0 |
29 |
Engebraaten O , Hjortland GO , Hirschberg H , et al. Growth of precultured human glioma specimens in nude rat brain[J]. J Neurosurg, 1999, 90 (1): 125- 132.
doi: 10.3171/jns.1999.90.1.0125 |
30 |
Beck B , Blanpain C . Unravelling cancer stem cell potential[J]. Nat Rev Cancer, 2013, 13 (10): 727- 738.
doi: 10.1038/nrc3597 |
31 |
Rubio-Manzanares Dorado M , Marín Gómez LM , Aparicio Sánchez D , et al. Translational pancreatic cancer research: a comparative study on patient- derived xenograft models[J]. World J Gastroenterol, 2018, 24 (7): 794- 809.
doi: 10.3748/wjg.v24.i7.794 |
32 |
Jung J . Human tumor xenograft models for preclinical assessment of anticancer drug development[J]. Toxicol Res, 2014, 30 (1): 1- 5.
doi: 10.5487/TR.2014.30.1.001 |
33 |
Siolas D , Hannon GJ . Patient derived tumor xenografts: transforming clinical samples into mouse models[J]. Cancer Res, 2013, 73 (17): 5315- 5319.
doi: 10.1158/0008-5472.CAN-13-1069 |
34 |
Ohgaki H , Kleihues P . The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19 (4): 764- 772.
doi: 10.1158/1078-0432.CCR-12-3002 |
35 | Bjerkvig R , Laerum OD , Mella O . Glioma cell interactions with fetal rat brain aggregates in vitro and with brain tissue in vivo[J]. Cancer Res, 1986, 46 (8): 4071- 4079. |
36 |
Ying QL , Stavridis M , Griffiths D , et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture[J]. Nat Biotechnol, 2003, 21 (2): 183- 186.
doi: 10.1038/nbt780 |
37 |
Benito-Kwiecinski S , Lancaster MA . Brain Organoids: Human neurodevelopment in a dish[J]. Cold Spring Harb Perspect Biol, 2019, a035709.
doi: 10.1101/cshperspect.a035709 |
38 |
Quadrato G , Nguyen T , Macosko EZ , et al. Cell diversity and network dynamics in photosensitive human brain organoids[J]. Nature, 2017, 545 (7652): 48- 53.
doi: 10.1038/nature22047 |
39 |
Kikuchi T , Morizane A , Doi D , et al. Human iPS cell-derived dopaminergic neurons function in a primate parkinson's disease model[J]. Nature, 2017, 548 (7669): 592- 596.
doi: 10.1038/nature23664 |
40 |
Bian S , Repic M , Guo Z , et al. Genetically engineered cerebral organoids model brain tumor formation[J]. Nat Methods, 2018, 15 (8): 631- 639.
doi: 10.1038/s41592-018-0070-7 |
41 |
Di Lullo E , Kriegstein AR . The use of brain organoids to investigate neural development and disease[J]. Nat Rev Neurosci, 2017, 18 (10): 573- 584.
doi: 10.1038/nrn.2017.107 |
42 |
Camp JG , Badsha F , Florio M , et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development[J]. Proc Natl Acad Sci USA, 2015, 112 (51): 15672- 15677.
doi: 10.1073/pnas.1520760112 |
43 |
Pasca SP . The rise of three-dimensional human brain cultures[J]. Nature, 2018, 553 (7689): 437- 445.
doi: 10.1038/nature25032 |
44 |
Qian Xuyu , Nguyen Ha Nam , Song Mingxi M , et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165 (5): 1238- 1254.
doi: 10.1016/j.cell.2016.04.032 |
45 | Gately L , McLachlan SA , Dowling A , et al. Life beyond a diagnosis of glioblastoma: a system review of the literature[J]. J Cancer Surviv, 2017, 11 (4): 447- 452. |
46 |
Lamb J , Crawford ED , Peck D , et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006, 313 (5795): 1929- 1935.
doi: 10.1126/science.1132939 |
47 |
Michnick SW . The connectivity map[J]. Nat Chem Biol, 2006, 2 (12): 663- 664.
doi: 10.1038/nchembio1206-663 |
[1] | 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 58(8): 67-73. |
[2] | 徐继禧,陈伟健. 髓内弥漫性中线胶质瘤伴H3 K27M突变1例[J]. 山东大学学报 (医学版), 2020, 58(7): 96-101. |
|