您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (9): 11-19.doi: 10.6040/j.issn.1671-7554.0.2024.1421

• “大数据赋能AI大模型驱动的多模态队列设计与分析”重点专题 • 上一篇    

老年人群可改变心血管危险因素聚集模式与脑卒中的关联

逄锦宏1,2,苏萍3,乔俊鹏1,2,陈巧巧1,2,陈学禹1,2,赵颖颖1,2,施婕4,孙晓茹1,2,李秋春1,2,何蕊言1,2,范轶欧5,迟蔚蔚1,3   

  1. 1.山东大学齐鲁医学院公共卫生学院生物统计学系, 山东 济南 250012;2.山东大学健康医疗大数据研究院, 山东 济南 250002;3.山东健康医疗大数据管理中心, 山东 济南 250002;4.泰州医药高新技术产业开发区人才发展中心, 江苏 泰州 225326;5.山东省疾病预防控制中心, 山东 济南 250014
  • 发布日期:2025-09-08
  • 通讯作者: 迟蔚蔚. E-mail:202259050001@mail.sdu.edu.cn范轶欧. E-mail:fyo2006@163.com
  • 基金资助:
    国家科技重大专项(2023ZD0503500);潍坊市中央财政支持公立医院改革与高质量发展示范项目(ZFCG-2024-0000505)

Association between modifiable cardiovascular risk factors clustering patterns and stroke in the elderly population

PANG Jinhong1,2, SU Ping3, QIAO Junpeng1,2, CHEN Qiaoqiao1,2, CHEN Xueyu1,2, ZHAO Yingying1,2, SHI Jie4, SUN Xiaoru1,2, LI Qiuchun1,2, HE Ruiyan1,2, FAN Yiou5, CHI Weiwei1,3   

  1. 1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Institute for Medical Dataology, Shandong University, Jinan 250003, Shandong, China;
    3. National Administration of Health Data, Jinan 250002, Shandong, China;
    4. Talent Development Center, Taizhou Medical High-tech Industrial Development Zone, Taizhou 225326, Jiangsu, China;
    5. Centers for Disease Control and Prevention of Shandong, Jinan 250014, Shandong, China
  • Published:2025-09-08

摘要: 目的 探索山东省不同性别老年人群中可改变心血管危险因素(modifiable cardiovascular risk factors, MCVRFS)的聚集模式,并评估其与脑卒中发生的关联性。 方法 基于齐鲁全生命周期电子健康研究型数据库(Cheeloo Lifespan Electronic Health Research Data-library, Cheeloo LEAD),纳入2015年6月1日至12月31日期间具有完整健康体检记录、电子病历记录和公共卫生建档记录的≥60岁老年人,构建包含58 633名参与者的随访队列,随访期为7年,研究终点为脑卒中事件。通过潜在类别分析(latent class analysis, LCA)探索MCVRFS的聚集模式,采用Cox比例风险回归模型评估不同聚集模式与脑卒中的关联性。 结果 本研究通过LCA在不同性别亚群中均识别出4种MCVRFS聚集模式。男性人群低风险组、吸烟饮酒组、超重肥胖组和代谢综合征组的占比分别为39.02%、16.41%、36.34%和8.22%;女性人群中,低风险组、吸烟饮酒组、体质量及血脂异常组和代谢综合征组的占比分别为41.00%、0.44%、46.76%和11.80%。男性人群中,新发脑卒中6 764例,发病密度为0.04 947/人年;女性新发脑卒中8 141例,发病密度为0.04 273/人年。校正混杂因素后,Cox回归结果显示,男性人群中,吸烟饮酒组、超重肥胖组、代谢综合征组发生脑卒中的风险分别为低风险组的1.13倍(HR=1.13,95%CI=1.05~1.21)、1.16倍(HR=1.16,95%CI=1.09~1.23)和2.20倍(HR=2.20,95%CI=2.04~2.38);女性人群中,体质量及血脂异常组和代谢综合征组发生脑卒中的风险分别为低风险组的1.16倍(HR=1.16,95%CI=1.10~1.21)和2.39倍(HR=2.39,95%CI=2.25~2.54)。 结论 本研究在山东省不同性别老年人群中均识别出4种MCVRFS的聚集模式,男性人群中,超重肥胖组、吸烟饮酒组和代谢综合征组均增加脑卒中风险;女性人群中,体质量及血脂异常组和代谢综合征组均增加脑卒中发生风险。针对不同聚集模式的个体化干预策略可能有助于降低老年人脑卒中的发生率,减轻其疾病负担。

关键词: 脑卒中, 可改变心血管危险因素, 山东省, 老年人, 队列研究, 潜在类别分析, 生存分析

Abstract: Objective To explore the gender-specific clustering patterns of modifiable cardiovascular risk factors(MCVRFS)and assess their associations with stroke incidence among the elderly population in Shandong Province. Methods Based on the Cheeloo Lifespan Electronic Health Research Data-library(Cheeloo LEAD)database, 58,633 participants aged ≥60 years old with complete health examination records, electronic medical records, and public health archives from June 1 to December 31, 2015 were included. A seven-year follow-up cohort was constructed, with occurence of stroke as the study endpoint. Latent class analysis(LCA)was used to identify MCVRFS clustering patterns, and Cox proportional hazards regression models were applied to evaluate associations between clusters and stroke risk. Results LCA identified four MCVRFS clusters in both genders. Males comprised the low-risk(39.02%), smoking and alcohol consumption(16.41%), overweight/obesity(36.34%), and metabolic syndrome(8.22%)groups. Females comprised the low-risk(41.00%), smoking and alcohol consumption(0.44%), overweight and dyslipidemia(46.76%), and metabolic syndrome(11.80%)groups. During follow-up, 6,764 new stroke cases occurred in males(incidence density: 4,947/100,000 person-years)and 8,141 in females(incidence density: 4,273/100,000 person-years). Adjusted Cox regression showed that males in smoking and alcohol consumption group(HR=1.13, 95%CI=1.05-1.21), overweight obesity group(HR=1.16, 95%CI=1.09-1.23), and metabolic syndrome group(HR=2.20, 95%CI=2.04-2.38)had elevated stroke risks compared to the low-risk group. In females, overweight and dyslipidemia group(HR=1.16, 95%CI=1.10-1.21)and metabolic syndrome group(HR=2.39, 95%CI=2.25-2.54)showed higher stroke risks compared to the low-risk group. Conclusion Four kinds of gender-specific MCVRFS clustering patterns are identified in Shandongs elderly population. Overweight-obesity, smoking-alcohol, and metabolic syndrome clusters increase stroke risk in males, while weight-dyslipidemia and metabolic syndrome clusters elevate risks in females. Targeted intervention strategies tailored to these clusters may reduce stroke incidence and disease burden in the elderly.

Key words: Stroke, Modifiable cardiovascular risk factors, Shandong Province, Elderly, Cohort study, Latent class analysis, Survival analysis

中图分类号: 

  • R195
[1] GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy(HALE), and population estimates in 204 countries and territories, 1950-2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1160-1203.
[2] Dai Y, Teng D, Zhang CS, et al. Priorities in tackling noncommunicable diseases among the population aged 60 years and older in China, 1990-2021: a population-based study[J]. Ageing Res Rev, 2024, 102: 102574. doi:10.1016/j.arr.2024.102574
[3] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021.
[4] GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820.
[5] Tu WJ, Wang LD, Yan F, et al. China stroke surveillance report 2021[J]. Mil Med Res, 2023, 10(1): 33. doi:10.1186/s40779-023-00463-x
[6] Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2[J]. BMJ, 2008, 336(7659): 1475-1482.
[7] Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries(the INTERHEART study): case-control study[J]. Lancet, 2004, 364(9438): 937-952.
[8] Timmis A, Townsend N, Gale C, et al. European society of cardiology: cardiovascular disease statistics 2017[J]. Eur Heart J, 2018, 39(7): 508-579.
[9] Steptoe A, Kivimäki M. Stress and cardiovascular disease: an update on current knowledge[J]. Annu Rev Public Health, 2013, 34: 337-354. doi:10.1146/annurev-publhealth-031912-114452
[10] US Preventive Services Task Force, Krist AH, Davidson KW, et al. Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: US Preventive Services Task Force Recommendation Statement[J]. JAMA, 2020, 324(20): 2069-2075.
[11] Cium arnean L, Milaciu MV, Negrean V, et al. Cardiovascular risk factors and physical activity for the prevention of cardiovascular diseases in the elderly[J]. Int J Environ Res Public Health, 2021, 19(1): 207. doi:10.3390/ijerph19010207
[12] Leroux C, Brazeau AS, Gingras V, et al. Lifestyle and cardiometabolic risk in adults with type 1 diabetes: a review[J]. Can J Diabetes, 2014, 38(1): 62-69.
[13] World Health Organization. World report on ageing and health[M]. World Health Organization, 2015.
[14] 徐松波. 中国中老年人心血管系统疾病危险因素及聚集[J]. 中国老年学杂志, 2018, 38(12): 2819-2822. XU Songbo. Risk factors and aggregation of cardiovascular diseases in middle-aged and elderly people in China[J]. Chinese Journal of Gerontology, 2018, 38(12): 2819-2822.
[15] 方杰. 冠心病危险因素聚集的研究进展[J]. 护理研究, 2023, 37(23): 4241-4246. FANG Jie. Research progress on clustering of risk factors for patients with coronary heart disease[J]. Chinese Nursing Research, 2023, 37(23): 4241-4246.
[16] Leventhal AM, Huh J, Dunton GF. Clustering of modifiable biobehavioral risk factors for chronic disease in US adults: a latent class analysis[J]. Perspect Public Health, 2014, 134(6): 331-338.
[17] Hong X, Ye Q, He J, et al. Prevalence and clustering of cardiovascular risk factors: a cross-sectional survey among Nanjing adults in China[J]. BMJ Open, 2018, 8(6): e020530. doi:10.1136/bmjopen-2017-020530
[18] Yu J, Ma Y, Yang S, et al. Risk factors for cardiovascular disease and their clustering among adults in Jilin(China)[J]. Int J Environ Res Public Health, 2015, 13(1): ijerph13010070. doi:10.3390/ijerph13010070
[19] 林秀萍, 韩耀风, 郑雪珍, 等. 大田县居民心血管病危险因素聚集及其与发病的关联性研究[J]. 现代预防医学, 2022, 49(20): 3655-3660, 3672. LIN Xiuping, HAN Yaofeng, ZHENG Xuezhen, et al. Clustering of risk factors for cardiovascular disease in residents of Datian County and its association with the disease[J]. Modern Preventive Medicine, 2022, 49(20): 3655-3660, 3672.
[20] 庞林鸿. 云南省成年居民心血管病危险因素聚集性特征及发病风险评估[D]. 昆明: 昆明医科大学, 2023.
[21] Sinha P, Calfee CS, Delucchi KL. Practitioner’s guide to latent class analysis: methodological considerations and common pitfalls[J]. Crit Care Med, 2021, 49(1): e63-e79.
[22] Wu J, Cheng XQ, Qiu L, et al. Prevalence and clustering of major cardiovascular risk factors in China: a recent cross-sectional survey[J]. Medicine, 2016, 95(10): e2712. doi:10.1097/MD.0000000000002712
[23] Ziaei S, Mohseni H. Correlation between hormonal statuses and metabolic syndrome in postmenopausal women[J]. J Family Reprod Health, 2013, 7(2): 63-66.
[24] Vasan RS, Enserro DM, Xanthakis V, et al. Temporal trends in the remaining lifetime risk of cardiovascular disease among middle-aged adults across 6 decades: the Framingham study[J]. Circulation, 2022, 145(17): 1324-1338.
[25] Tyrrell DJ, Blin MG, Song JR, et al. Age-associated mitochondrial dysfunction accelerates atherogenesis[J]. Circ Res, 2020, 126(3): 298-314.
[26] Lopez-Candales A, Hernández Burgos PM, Hernandez-Suarez DF, et al. Linking chronic inflammation with cardiovascular disease: from normal aging to the metabolic syndrome[J]. J Nat Sci, 2017, 3(4): e341.
[1] 申路佳,逯天威,巩伟明,赵岩松,王淑康,袁中尚. 代谢风险评分在2型糖尿病人群心血管结局预测中的应用[J]. 山东大学学报 (医学版), 2025, 63(8): 69-78.
[2] 陈莹莹,王鲁,胡锡峰,朱高培,薛付忠. 基于贝叶斯网络的2型糖尿病患者并发脑卒中风险预测[J]. 山东大学学报 (医学版), 2025, 63(8): 94-102.
[3] 宋思豪,程传龙,李树芬,席睿,梁珂梦,倪志松,崔峰,李秀君. 大气污染对淄博市缺血性脑卒中患者寿命损失年的短期影响及极端温度事件修饰效应[J]. 山东大学学报 (医学版), 2025, 63(2): 84-94.
[4] 刘国伟,翟艳,王薇,吕军城. 潍坊市某城区65岁及以上老年人社会适应能力现状及其影响因素[J]. 山东大学学报 (医学版), 2025, 63(2): 104-110.
[5] 山东省医学会乳腺疾病多学科联合委员会. 乳腺癌多学科协作诊疗山东共识(2024年版)[J]. 山东大学学报 (医学版), 2025, 63(1): 10-16.
[6] 王利红,窦少坤,栾惠,李宝瑞,宗爱珍,徐同成. 多糖在吞咽障碍食品中应用的研究进展[J]. 山东大学学报 (医学版), 2024, 62(8): 1-8.
[7] 刘淋,王晓楠,杨雅溪,王江腾,李旭,周新丽,管庆波,张栩. 甘油三酯-葡萄糖指数与颅内动脉粥样硬化性狭窄的相关性[J]. 山东大学学报 (医学版), 2024, 62(8): 93-100.
[8] 郭艳童,于媛媛,陈莹莹,付雨,张伯韬,袁莹,孙爽爽,赵英淇,朱高培,薛付忠. 山东省主动健康示范区域老年人慢病管理知信行现状及影响机制[J]. 山东大学学报 (医学版), 2024, 62(7): 98-105.
[9] 宋东玉,吕靖然,李玉丽,刘宇舟. 基于安德森模型的城市中老年人隔代抚养培训需求影响因素[J]. 山东大学学报 (医学版), 2024, 62(6): 108-115.
[10] 张伯韬,仉率杰,孙爽爽,袁莹,胡锡峰,贾晓峰,于媛媛,薛付忠. 基于贝叶斯网络的缺血性脑卒中筛查模型构建[J]. 山东大学学报 (医学版), 2024, 62(11): 73-84.
[11] 李晨淑,王瑞华,陆信武. 不同腔内技术治疗非A非B型夹层的神经系统并发症研究进展[J]. 山东大学学报 (医学版), 2024, 62(11): 1-7.
[12] 王琼,李欣宇,徐磊,周成超,江帆. 社区听力康复对老年听力障碍患者沟通能力的干预效果评估:一项随机对照试验[J]. 山东大学学报 (医学版), 2024, 62(11): 96-104.
[13] 姜淑伟,马良,康保絮,王志浩. FRAIL量表在老年关节置换术后压力性损伤风险预测中的应用[J]. 山东大学学报 (医学版), 2024, 62(11): 54-66.
[14] 卢伟,刘欢,贾贤杰,苏萍,施婕,王雅倩,迟蔚蔚. 植被覆盖与呼吸系统恶性肿瘤死亡风险关联分析[J]. 山东大学学报 (医学版), 2023, 61(8): 94-100.
[15] 于晴晴,常开锋,李吉庆,张凯,付苹,刘晓雯,赵英淇,薛付忠. 中老年人群高血压在非甾体抗炎药暴露与心脑血管疾病风险关联中的中介分析[J]. 山东大学学报 (医学版), 2023, 61(8): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!