山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (8): 69-78.doi: 10.6040/j.issn.1671-7554.0.2025.0119
• 临床研究 • 上一篇
申路佳1,2,逯天威3,巩伟明1,2,赵岩松1,2,王淑康1,2,袁中尚1,2
SHEN Lujia1,2, LU Tianwei3, GONG Weiming1,2, ZHAO Yansong1,2, WANG Shukang1,2, YUAN Zhongshang1,2
摘要: 目的 识别2型糖尿病人群中分别与心肌梗死、心力衰竭和缺血性脑卒中相关的代谢物,进而构建代谢风险评分,并评价将代谢风险评分纳入传统临床模型是否能提高模型预测准确性。 方法 利用英国生物银行队列数据,应用多变量Cox比例风险回归模型筛选出分别与心肌梗死、心力衰竭和缺血性脑卒中相关的代谢物,并进行时间截断的敏感性分析。随后,基于LightGBM算法构建代谢风险评分,最后将评分纳入传统临床模型,进行模型评价。 结果 多变量Cox比例风险回归模型和时间截断的敏感性分析共发现了分别与心肌梗死、心力衰竭和缺血性脑卒中相关的119种、77种和12种代谢物,随后利用这些代谢物构建代谢风险评分。将构建的代谢风险评分纳入传统临床模型后,模型的预测性能显著提高,3种疾病的预测模型AUC提高到0.804、0.900和0.844,与仅利用传统临床模型相比,分别提高了0.145、0.198和0.188。此外,敏感性和特异性结果表明,这3个模型具有较高的预测准确性(敏感性:0.706、0.804、0.801;特异性:0.763、0.861、0.722),校准曲线和决策曲线同样显示模型具有较好的预测性能。 结论 将代谢风险评分纳入传统临床模型可以显著提高2型糖尿病人群心血管疾病的预测准确性。
中图分类号:
| [1] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990—2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. [2] Collaboration ERF, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies[J]. Lancet, 2010, 375(9733): 2215-2222. [3] Birkeland KI, Bodegard J, Eriksson JW, et al. Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: a large multinational cohort study[J]. Diabetes Obes Metab, 2020, 22(9): 1607-1618. [4] Maida CD, Daidone M, Pacinella G, et al. Diabetes and ischemic stroke: an old and new relationship an overview of the close interaction between these diseases[J]. Int J Mol Sci, 2022, 23(4): 2397. doi:10.3390/ijms23042397 [5] Jia RR, Wang Q, Huang HY, et al. Cardiovascular disease risk models and dementia or cognitive decline: a systematic review[J]. Front Aging Neurosci, 2023, 15: 1257367. doi:10.3389/fnagi.2023.1257367 [6] Khan SS, Matsushita K, Sang YY, et al. Development and validation of the American heart associations PREVENT equations[J]. Circulation, 2024, 149(6): 430-449. [7] Khan SS, Coresh J, Pencina MJ, et al. Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: a scientific statement from the American heart association[J]. Circulation, 2023, 148(24): 1982-2004. [8] Dziopa K, Asselbergs FW, Gratton J, et al. Cardiovascular risk prediction in type 2 diabetes: a comparison of 22 risk scores in primary care settings[J]. Diabetologia, 2022, 65(4): 644-656. [9] McGarrah RW, Crown SB, Zhang GF, et al. Cardiovascular metabolomics[J]. Circ Res, 2018, 122(9): 1238-1258. [10] Xie RJ, Seum T, Sha S, et al. Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics[J]. Cardiovasc Diabetol, 2025, 24(1): 18. doi:10.1186/s12933-025-02581-3 [11] Huang Z, Klaric L, Krasauskaite J, et al. Combining serum metabolomic profiles with traditional risk factors improves 10-year cardiovascular risk prediction in people with type 2 diabetes[J]. Eur J Prev Cardiol, 2023, 30(12): 1255-1262. [12] Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age[J]. PLoS Med, 2015, 12(3): e1001779. doi:10.1371/journal.pmed.1001779 [13] Ritchie SC, Surendran P, Karthikeyan S, et al. Quality control and removal of technical variation of NMR metabolic biomarker data in ~120, 000 UK Biobank participants[J]. Sci Data, 2023, 10(1): 64. doi:10.1038/s41597-023-01949-y [14] Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race[J]. N Engl J Med, 2021, 385(19): 1737-1749. [15] Qiang YX, You J, He XY, et al. Plasma metabolic profiles predict future dementia and dementia subtypes: a prospective analysis of 274, 160 participants[J]. Alzheimers Res Ther, 2024, 16(1): 16. doi:10.1186/s13195-023-01379-3 [16] Zhang SY, Wang Z, Wang YJ, et al. A metabolomic profile of biological aging in 250, 341 individuals from the UK Biobank[J]. Nat Commun, 2024, 15(1): 8081. doi:10.1038/s41467-024-52310-9 [17] Julkunen H, Cichońska A, Tiainen M, et al. Atlas of plasma NMR biomarkers for health and disease in 118, 461 individuals from the UK Biobank[J]. Nat Commun, 2023, 14(1): 604. doi:10.1038/s41467-023-36231-7 [18] McGranaghan P, Saxena A, Rubens M, et al. Predictive value of metabolomic biomarkers for cardiovascular disease risk: a systematic review and meta-analysis[J]. Biomarkers, 2020, 25(2): 101-111. [19] American Diabetes Association Professional Practice Committee. 10. Cardiovascular disease and risk management: standards of care in diabetes-2024[J]. Diabetes Care, 2024, 47(Suppl 1): S179-S218. [20] SCORE2-Diabetes Working Group and the ESC Cardiovascular Risk Collaboration. SCORE2-diabetes: 10-year cardiovascular risk estimation in type 2 diabetes in Europe[J]. Eur Heart J, 2023, 44(28): 2544-2556. [21] Arques S. Human serum albumin in cardiovascular diseases[J]. Eur J Intern Med, 2018, 52: 8-12. doi:10.1016/j.ejim.2018.04.014 [22] Nelson JJ, Liao D, Sharrett AR, et al. Serum albumin level as a predictor of incident coronary heart disease: the Atherosclerosis Risk in Communities(ARIC)study[J]. Am J Epidemiol, 2000, 151(5): 468-477. [23] Gopal DM, Kalogeropoulos AP, Georgiopoulou VV, et al. Serum albumin concentration and heart failure risk The Health, Aging, and Body Composition Study[J]. Am Heart J, 2010, 160(2): 279-285. [24] Filippatos GS, Desai RV, Ahmed MI, et al. Hypoalbuminaemia and incident heart failure in older adults[J]. Eur J Heart Fail, 2011, 13(10): 1078-1086. [25] Xu WH, Dong CH, Rundek T, et al. Serum albumin levels are associated with cardioembolic and cryptogenic ischemic strokes: Northern Manhattan Study[J]. Stroke, 2014, 45(4): 973-978. [26] Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice: developed by the task force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology(EAPC)[J]. Rev Esp Cardiol(Engl Ed), 2022, 75(5): 429. doi:10.1016/j.rec.2022.04.003 [27] Matsushita K, Kaptoge S, Hageman SHJ, et al. Including measures of chronic kidney disease to improve cardiovascular risk prediction by SCORE2 and SCORE2-OP[J]. Eur J Prev Cardiol, 2023, 30(1): 8-16. [28] Camont L, John Chapman M, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease[J]. Trends Mol Med, 2011, 17(10): 594-603. [29] Bocher O, Singh A, Huang Y, et al. Disentangling the consequences of type 2 diabetes on targeted metabolite profiles using causal inference and interaction QTL analyses[J]. PLoS Genet, 2024, 20(12): e1011346. doi:10.1371/journal.pgen.1011346 [30] Teis A, Cediel G, Amigó N, et al. Particle size and cholesterol content of circulating HDL correlate with cardiovascular death in chronic heart failure[J]. Sci Rep, 2021, 11(1): 3141. doi:10.1038/s41598-021-82861-6 [31] Liu Y, Jia SD, Yuan DS, et al. Apolipoprotein B/A-I ratio predicts lesion severity and clinical outcomes in diabetic patients with acute coronary syndrome[J]. Circ J, 2020, 84(7): 1132-1139. [32] McQueen MJ, Hawken S, Wang XY, et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries(the INTERHEART study): a case-control study[J]. Lancet, 2008, 372(9634): 224-233. [33] Walldius G, Jungner I, Holme I, et al. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction(AMORIS study): a prospective study[J]. Lancet, 2001, 358(9298): 2026-2033. [34] Fu C, Liu DB, Liu Q, et al. Revisiting an old relationship: the causal associations of the ApoB/ApoA1 ratio with cardiometabolic diseases and relative risk factors-a mendelian randomization analysis[J]. Cardiovasc Diabetol, 2024, 23(1): 51. doi:10.1186/s12933-024-02140-2 |
| [1] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
| [2] | 河南省生物医学工程学会立体心电图专业委员会,中国医药教育协会心电学专业委员会,山东中医药学会心电学专业委员会,青岛市医学会心电生理与起搏专科分会,全国医药技术市场协会远程心脏专业委员会. 心电向量图诊断标准规范化专家共识(2025)[J]. 山东大学学报 (医学版), 2025, 63(7): 1-10. |
| [3] | 王丽云,高天勤,刘雨佳,陈青,陈柳,沙凯辉. 基于机器学习产后压力性尿失禁风险预测模型的构建及验证[J]. 山东大学学报 (医学版), 2025, 63(6): 55-66. |
| [4] | 贾魁,李治国,程翠婷,李志娟,刘瑞卿. 银杏叶片联合曲美他嗪治疗老年慢性心力衰竭的效果及机制[J]. 山东大学学报 (医学版), 2025, 63(6): 19-26. |
| [5] | 温学龙,刘安慧,陈经纬,吴梦婷,杨岷. 急性非ST抬高型心肌梗死行冠状动脉旁路移植手术时机Meta分析[J]. 山东大学学报 (医学版), 2025, 63(5): 60-70. |
| [6] | 李敬,郝盼盼. 急性心力衰竭患者出入院心率变化与预后相关性[J]. 山东大学学报 (医学版), 2025, 63(4): 75-82. |
| [7] | 陈瑛翼,游倩,王意,张帆,李凤,季舒铭,徐浩源,饶志勇. 办公室职员肌肉质量减少预测模型的开发与验证[J]. 山东大学学报 (医学版), 2025, 63(4): 26-35. |
| [8] | 王宝炫,焦杰,张厚君,刘奇,于冠英. 衰弱与肌少症评估在胃肠道肿瘤术后结局预测中的应用与展望[J]. 山东大学学报 (医学版), 2025, 63(4): 51-58. |
| [9] | 宋思豪,程传龙,李树芬,席睿,梁珂梦,倪志松,崔峰,李秀君. 大气污染对淄博市缺血性脑卒中患者寿命损失年的短期影响及极端温度事件修饰效应[J]. 山东大学学报 (医学版), 2025, 63(2): 84-94. |
| [10] | 李永,崔书君,杨飞,张凡,殷晓霞. 基于增强MRI的亚区域影像组学模型可预测乳腺癌患者新辅助化疗后的病理完全反应[J]. 山东大学学报 (医学版), 2025, 63(1): 81-89. |
| [11] | 刘淋,王晓楠,杨雅溪,王江腾,李旭,周新丽,管庆波,张栩. 甘油三酯-葡萄糖指数与颅内动脉粥样硬化性狭窄的相关性[J]. 山东大学学报 (医学版), 2024, 62(8): 93-100. |
| [12] | 孙丽娜,白红艳,牛宗格,张福帅,曲仪庆. 基于SII构建及评价预测ARDS住院死亡率的在线临床风险模型[J]. 山东大学学报 (医学版), 2024, 62(7): 10-20. |
| [13] | 郭振江,王宁,赵光远,杜立强,崔朝勃,刘防震. 基于机器学习建立术前预测近端胃癌食管切缘阳性模型[J]. 山东大学学报 (医学版), 2024, 62(7): 78-83. |
| [14] | 刁玉洁,林琳,李文瑄,王洲洋,江蓓,胡迎迎,刘广义. NPR预测ANCA相关血管炎不良肾脏预后及其协同多因素优化模型[J]. 山东大学学报 (医学版), 2024, 62(2): 60-68. |
| [15] | 王震,颜凤,宗孟至,徐峰,陈玉国,李传保. Turner综合征并发急性心肌梗死1例[J]. 山东大学学报 (医学版), 2024, 62(2): 109-112. |
|
||