山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (5): 43-53.doi: 10.6040/j.issn.1671-7554.0.2024.0079
• 慢性气道疾病的精准个体化诊疗——临床研究 • 上一篇
石硕川1*,曾荣2*,张锦涛1,张东2,潘云2,刘晓菲1,许长娟1,王莹1,董亮1,2
SHI Shuochuan1*, ZENG Rong2*, ZHANG Jintao1, ZHANG Dong2, PAN Yun2, LIU Xiaofei1, XU Changjuan1, WANG Ying1, DONG Liang1,2
摘要: 目的 识别支气管哮喘发生发展过程中差异表达的免疫关键基因和免疫细胞,并探讨两者之间的相关性。 方法 从公共基因表达数据库(gene expression omnibus, GEO)和Import数据库中分别下载哮喘相关数据集和免疫相关基因,利用R软件分析获得GSE76262中差异表达的免疫相关基因(differentially expressed immune-related genes, DE-IRGs)。在STRING数据库中明确DE-IRGs间的相互作用。使用Cytoscape软件中的CytoHubba插件筛选关键的DE-IRGs,并在GSE137268中进行验证。利用受试者工作特征(receiver operating characteristic, ROC)曲线评估关键DE-IRGs作为生物标志物的潜力。此外,单样本基因集富集分析(single-sample gene set enrichment analysis, ssGSEA)算法被用来分析28种免疫细胞在哮喘和健康者中的表达差别,使用斯皮尔曼相关系数评估关键免疫基因与免疫细胞之间的相关性。 结果 在GSE76262中鉴定出17个DE-IRGs,经PPI网络的筛选和在GSE137268中的验证,CCL22、CCR7、IL1R2、IL18R1、TNFAIP3和VEGFA被识别为哮喘患者诱导痰中的关键DE-IRGs且具有较高的诊断价值。此外,ssGSEA的结果提示哮喘患者存在明显的免疫失衡,与健康者相比,11种免疫细胞在哮喘患者诱导痰中的浸润明显增加。同时,CCL22、CCR7、IL1R2、IL18R1、VEGFA、TNFAIP3与浸润的免疫细胞呈显著正相关。 结论 CCL22、CCR7、IL1R2、IL18R1、VEGFA、TNFAIP3可作为哮喘的潜在生物标志物,且可能参与调控其发病过程中免疫细胞的浸润。
中图分类号:
| [1] 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048. Asthma Group of Chinese Throacic Society. Guidelines for bronchial asthma prevent and management(2020 edition)Asthma Group of Chinese Throacic Society[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2020, 43(12): 1023-1048. [2] Huang KW, Yang T, Xu JY, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394(10196): 407-418. [3] Kyvsgaard JN, Brustad N, Hesselberg LM, et al. Key risk factors of asthma-like symptoms are mediated through infection burden in early childhood[J]. J Allergy Clin Immunol, 2024, 153(3): 684-694. [4] Kyvsgaard JN, Chawes BL, Horner DLG, et al. Risk factors and age-related patterns of asthma-like symptoms in early childhood[J]. J Allergy Clin Immunol Pract, 2023, 11(6): 1773-1784.e10. [5] Potaczek DP, Miethe S, Schindler V, et al. Role of airway epithelial cells in the development of different asthma phenotypes[J]. Cell Signal, 2020, 69: 109523. doi:10.1016/j.cellsig.2019.109523. [6] Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(9): 2521-2522. [7] Murphy RC, Lai Y, Liu M, et al. Distinct epithelial-innate immune cell transcriptional circuits underlie airway hyperresponsiveness in asthma[J]. Am J Respir Crit Care Med, 2023, 207(12): 1565-1575. [8] Guida G, Riccio AM. Immune induction of airway remodeling[J]. Semin Immunol, 2019, 46: 101346. doi:10.1016/j.smim.2019.101346. [9] Benson M. Clinical implications of omics and systems medicine: focus on predictive and individualized treatment[J]. J Intern Med, 2016, 279(3): 229-240. [10] Ray A, Camiolo M, Fitzpatrick A, et al. Are we meeting the promise of endotypes and precision medicine in asthma?[J]. Physiol Rev, 2020, 100(3): 983-1017. [11] Papi A, Brightling C, Pedersen SE, et al. Asthma[J]. Lancet, 2018, 391(10122): 783-800. [12] Charles D, Shanley J, Temple SN, et al. Real-world efficacy of treatment with benralizumab, dupilumab, mepolizumab and reslizumab for severe asthma: a systematic review and meta-analysis[J]. Clin Exp Allergy, 2022, 52(5): 616-627. [13] Brusselle GG, Koppelman GH. Biologic therapies for severe asthma[J]. N Engl J Med, 2022, 386(2): 157-171. [14] Maglio A, Vitale C, Pellegrino S, et al. Real-life effectiveness of mepolizumab on forced expiratory flow between 25% and 75% of forced vital capacity in patients with severe eosinophilic asthma[J]. Biomedicines, 2021, 9(11): 1550. doi:10.3390/biomedicines9111550. [15] Feng B, Zhou T, Guo ZY, et al. Comprehensive analysis of immune-related genes for classification and immune microenvironment of asthma[J]. Am J Transl Res, 2023, 15(2): 1052-1062. [16] Daley D, Park JE, He JQ, et al. Associations and interactions of genetic polymorphisms in innate immunity genes with early viral infections and susceptibility to asthma and asthma-related phenotypes[J]. J Allergy Clin Immunol, 2012, 130(6): 1284-1293. [17] Lee CG, Link H, Baluk P, et al. Vascular endothelial growth factor(VEGF)induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung[J]. Nat Med, 2004, 10(10): 1095-1103. [18] Pilette C, Francis JN, Till SJ, et al. CCR4 ligands are up-regulated in the airways of atopic asthmatics after segmental allergen challenge[J]. Eur Respir J, 2004, 23(6): 876-884. [19] Lo CY, Michaeloudes C, Bhavsar PK, et al. Increased phenotypic differentiation and reduced corticosteroid sensitivity of fibrocytes in severe asthma[J]. J Allergy Clin Immunol, 2015, 135(5): 1186-1195.e1-6. [20] Camiolo MJ, Zhou XX, Wei Q, et al. Machine learning implicates the IL-18 signaling axis in severe asthma[J]. JCI Insight, 2021, 6(21): e149945. doi:10.1172/jci.insight.149945. [21] Liu Y, Xu K, Yao Y, et al. Current research into A20 mediation of allergic respiratory diseases and its potential usefulness as a therapeutic target[J]. Front Immunol, 2023, 14: 1166928. doi:10.3389/fimmu.2023.1166928. [22] Poto R, Criscuolo G, Marone G, et al. Human lung mast cells: therapeutic implications in asthma[J]. Int J Mol Sci, 2022, 23(22): 14466. doi:10.3390/ijms232214466. [23] Siddiqui S, Bachert C, Bjermer L, et al. Eosinophils and tissue remodeling: relevance to airway disease[J]. J Allergy Clin Immunol, 2023, 152(4): 841-857. [24] Felton JM, Dorward DA, Cartwright JA, et al. Mcl-1 protects eosinophils from apoptosis and exacerbates allergic airway inflammation[J]. Thorax, 2020, 75(7): 600-605. [25] van der Veen TA, de Groot LES, Melgert BN. The different faces of the macrophage in asthma[J]. Curr Opin Pulm Med, 2020, 26(1): 62-68. [26] Abdelaziz MH, Abdelwahab SF, Wan J, et al. Alternatively activated macrophages; a double-edged sword in allergic asthma[J]. J Transl Med, 2020, 18(1): 58. doi:10.1186/s12967-020-02251-w. [27] Mamessier E, Nieves A, Lorec AM, et al. T-cell activation during exacerbations: a longitudinal study in refractory asthma[J]. Allergy, 2008, 63(9): 1202-1210. [28] Smyth LJ, Eustace A, Kolsum U, et al. Increased airway T regulatory cells in asthmatic subjects[J]. Chest, 2010, 138(4): 905-912. [29] Boonpiyathad T, Capova G, Duchna HW, et al. Impact of high-altitude therapy on type-2 immune responses in asthma patients[J]. Allergy, 2020, 75(1): 84-94. [30] Boonpiyathad T, Sokolowska M, Morita H, et al. Der p 1-specific regulatory T-cell response during house dust mite allergen immunotherapy[J]. Allergy, 2019, 74(5): 976-985. [31] Xie Y, Abel PW, Casale TB, et al. TH17 cells and corticosteroid insensitivity in severe asthma[J]. J Allergy Clin Immunol, 2022, 149(2): 467-479. [32] Vollmer CM, Dias ASO, Lopes LM, et al. Leptin favors Th17/Treg cell subsets imbalance associated with allergic asthma severity[J]. Clin Transl Allergy, 2022, 12(6): e12153. doi:10.1002/clt2.12153. [33] Lin K, Wang T, Tang QQ, et al. IL18R1-related molecules as biomarkers for asthma severity and prognostic markers for idiopathic pulmonary fibrosis[J]. J Proteome Res, 2023, 22(10): 3320-3331. [34] Imai T, Nagira M, Takagi S, et al. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine[J]. Int Immunol, 1999, 11(1): 81-88. [35] Nakano K, Whitehead GS, Lyons-Cohen MR, et al. Chemokine CCL19 promotes type 2 T-cell differentiation and allergic airway inflammation[J]. J Allergy Clin Immunol, 2024, 153(2): 487-502.e9. [36] Fainaru O, Shseyov D, Hantisteanu S, et al. Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease[J]. Proc Natl Acad Sci U S A, 2005, 102(30): 10598-10603. |
| [1] | 王婷,张丽,王刚. 神经心理性哮喘[J]. 山东大学学报 (医学版), 2024, 62(5): 28-34. |
| [2] | 丁伊人,刘婉莹,姚蕾,姚欣. 大环内酯类抗生素治疗哮喘的研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 21-27. |
| [3] | 申永春,文富强. 线粒体损伤相关分子模式作为慢性阻塞性肺疾病生物标志物的研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 16-20. |
| [4] | 陈映均,刘同刚. 综合生物信息学分析鉴定乙型肝炎病毒相关肝细胞癌中异常甲基化修饰的差异表达基因[J]. 山东大学学报 (医学版), 2023, 61(9): 101-117. |
| [5] | 孟健丽,王庆港. 生物信息学方法探讨VPS72在肺腺/鳞癌中的表达及潜在作用机制[J]. 山东大学学报 (医学版), 2023, 61(8): 40-49. |
| [6] | 常晴,刘佳,曲爱林,杨咏梅. 利用数据库信息分析NAMPT与肝癌的病理特征和免疫浸润的关联性[J]. 山东大学学报 (医学版), 2023, 61(4): 26-36. |
| [7] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
| [8] | 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109. |
| [9] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
| [10] | 杨丽萍,慕婷婷,杨玉娟,张宇,宋西成. 吸入性变应原对腺样体肥大合并支气管哮喘患儿肺功能影响[J]. 山东大学学报 (医学版), 2020, 58(3): 107-112. |
| [11] | 王传新. 外泌体生物标志物与肿瘤发生发展的研究进展[J]. 山东大学学报 (医学版), 2018, 56(10): 18-23. |
| [12] | 王红阳. 精准医疗时代的肿瘤生物标志物发展[J]. 山东大学学报 (医学版), 2018, 56(10): 1-2. |
| [13] | 柳晓涓,丁荔洁,康凤玲,周苗,薛付忠. 健康管理人群支气管哮喘风险预测模型[J]. 山东大学学报 (医学版), 2017, 55(12): 56-61. |
| [14] | 刘琳,刘春红,王得翔,吴金香,赵继萍,刘甜,张元元,王俊飞,柳亚慧,曹柳兆,董亮. 应用呼出气一氧化氮联合脉冲振荡肺功能评估哮喘患者的小气道功能[J]. 山东大学学报(医学版), 2016, 54(8): 78-83. |
| [15] | 王得翔1,季秀丽1,2,马德东1,张玉可1,何宝龙1,王文巧1,肖伟1. 济南地区支气管哮喘患者经济负担及其影响因素分析[J]. 山东大学学报(医学版), 2012, 50(5): 124-128. |
|
||