山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (2): 20-28.doi: 10.6040/j.issn.1671-7554.0.2023.0987
• 基础医学 • 上一篇
赵子辉1,2,3*,王旭阳2,3,4*,张鹏5,方宁宁5,石端博6,杨帆2,3,杨晓玫5,吴剑波2,3
ZHAO Zihui1,2,3*, WANG Xuyang2,3,4*, ZHANG Peng5, FANG Ningning5, SHI Duanbo6, YANG Fan2,3, YANG Xiaomei5, WU Jianbo2,3
摘要: 目的 构建一种操作简单快捷、测量准确的大鼠右心室压力测定方法。 方法 采用随机方法将30只8~10周龄的雄性SD大鼠分为3组:经胸右心室穿刺测压组(trans-thoracic right ventricular puncture manometry group,TTM组,n=10),经膈肌穿刺测压组(trans-diaphragmatic puncture manometry group, TDM组,n=10)和野百合碱诱导肺动脉高压采用经膈肌穿刺测压组(monocrotaline-induced pulmonary hypertension with trans-diaphragmatic manometry group,MCT-TDM组,n=10)。MCT-TDM组经胸腹侧皮下注射野百合碱(60 mg/kg),TTM组和TDM组注射等体积的无菌生理盐水。模型建立4周后,使用经膈肌穿刺法测定TDM组和MCT-TDM组大鼠的右心室收缩压(right ventricular systolic pressure, RVSP),随后立即开胸验证穿刺点的准确性;使用经胸右心室穿刺法测定TTM组大鼠RVSP。比较两种测压方法操作时间、测压成功率、RVSP等指标。取大鼠心肺组织,分离左、右心室,并计算右心室肥厚指数(right ventricular hypertrophy index, RVHI)。最后,对左肺组织进行苏木精-伊红(hematoxylin eosin, HE)染色,评价肺部小血管病变程度。 结果 TTM组从麻醉开始到成功测出右心室压力的时间为(6.83±1.36)min,TDM组为(8.13±1.25)min,MCT-TDM组为(8.32±1.23)min。TTM组测压成功率为70%,TDM组测压成功率为100%,MCT-TDM组成功率为90%。TDM组和TTM组测得的RVSP、RVHI差异无统计学意义(P>0.05)。MCT-TDM组的RVSP及RVHI均显著高于TDM组(P<0.001)。MCT-TDM组大鼠肺小动脉管壁相较于TDM组明显增厚,管腔狭窄。 结论 采用膈肌穿刺法测量肺动脉高压大鼠的右心室压力,这种方法无需开胸,避免了昂贵设备的使用,能准确、快速、简便地测量右心室血流动力学,具有较高的推广价值。
中图分类号:
[1] Olsson KM, Corte TJ, Kamp JC, et al. Pulmonary hypertension associated with lung disease: new insights into pathomechanisms, diagnosis, and management[J]. Lancet Respir Med, 2023, 11(9): 820-835. [2] Johnson S, Sommer N, Cox-Flaherty K, et al. Pulmonary hypertension: a contemporary review[J]. Am J Respir Crit Care Med, 2023, 208(5): 528-548. [3] Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Respir J, 2022, 43(38): 3618-3731. [4] Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Respir J, 2023, 61(1): 2200879. doi: 10.1183/13993003.00879-2022. [5] Jani V, Aslam MI, Fenwick AJ, et al. Right ventricular sarcomere contractile depression and the role of thick filament activation in human heart failure with pulmonary hypertension[J]. Circulation, 2023, 147(25): 1919-1932. [6] Bauersachs J, Olsson KM. Targeting pulmonary hypertension in patients with heart failure and preserved ejection fraction: rather static than DYNAMIC development?[J]. Eur Heart J, 2022, 43(36): 3414-3416. [7] Ambroz D, Jansa P, Kuchar J, et al. Predictors of survival in patients with pulmonary hypertension and acute right heart failure[J]. Bratisl Lek Listy, 2020, 121(3): 230-235. [8] Chang KY, Duval S, Badesch DB, et al. Mortality in pulmonary arterial hypertension in the modern era: early insights from the pulmonary hypertension association registry[J]. J Am Heart Assoc, 2022, 11(9): e024969. doi: 10.1161/JAHA.121.024969. [9] Maron BA, Brittain EL, Hess E, et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study[J]. Lancet Respir Med, 2020, 8(9): 873-884. [10] Boucherat O, Agrawal V, Lawrie A, et al. The latest in animal models of pulmonary hypertension and right ventricular failure[J]. Circ Res, 2022, 130(9): 1466-1486. [11] Bueno-Beti C, Sassi Y, Hajjar RJ, et al. Pulmonary artery hypertension model in rats by monocrotaline administration[J]. Methods Mol Biol, 2018, 1816: 233-241. doi:10.1007/9781-4939-8597-5-18. [12] 张栾, 陈欧, 栾云, 等. Gemigliptin对野百合碱诱导的肺动脉高压大鼠治疗作用及炎症因子的影响[J]. 山东大学学报(医学版), 2017, 55(5): 19-22. ZHANG Luan, CHEN Ou, LUAN Yun, et al. Effects of gemigliptin on the therapeutic effect and inflammatory factors of monocrotaline-induced pulmonary arterial hypertension in rats[J]. Journal of Shandong University(Health Sciences), 2017, 55(5): 19-22+30. [13] 彭小飞, 劳金泉, 刘冬立, 等. 右心室经胸穿刺测压法在肺动脉高压大鼠模型中的应用[J]. 中南医学科学杂志, 2018, 46(2): 197-200. PENG Xiaofei, LAO Jinqun, LIU Dongli, et al. Application of right ventricle pressure by right ventricle punctured through ghest in pulmonary hypertension rats model[J]. Medical Science Journal of Central South China, 2018, 46(2): 197-200. [14] Nickel NP, Yuan K, Dorfmuller P, et al. Beyond the lungs: systemic manifestations of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2020, 201(2): 148-157. [15] Mamazhakypov A, Hein L, Lother A. Mineralocorticoid receptors in pulmonary hypertension and right heart failure: From molecular biology to therapeutic targeting[J]. Pharmacol Ther, 2022, 231: 107987. doi: 10.1016/j.pharmthera.2021.107987. [16] Zhou X, Jiang Y, Wang Y, et al. Endothelial FIS1 DeSUMOylation protects against hypoxic pulmonary hypertension[J]. Circ Res, 2023, 133(6): 508-531. [17] Sangam S, Sun X, Schwantes-An TH, et al. SOX17 deficiency mediates pulmonary hypertension: at the crossroads of sex, metabolism, and genetics[J]. Am J Respir Crit Care Med, 2023, 207(8): 1055-1069. [18] Cunningham CM, Li M, Ruffenach G, et al. Y-Chromosome Gene, Uty, protects against pulmonary hypertension by reducing proinflammatory chemokines[J]. Am J Respir Crit Care Med, 2022, 206(2): 186-196. [19] Balistrieri A, Makino A, Yuan JX. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca(2+)signaling[J]. Physiol Rev, 2023, 103(3): 1827-1897. [20] Lin Q, Kumar S, Kariyawasam U, et al. Human resistin induces cardiac dysfunction in pulmonary hypertension[J]. J Am Heart Assoc, 2023, 12(6): e027621. doi: 10.1161/JAHA.122.027621. [21] Kwan ED, Vélez-Rendón D, Zhang X, et al. Distinct time courses and mechanics of right ventricular hypertrophy and diastolic stiffening in a male rat model of pulmonary arterial hypertension[J]. Am J Physiol Heart Circ Physiol, 2021, 321(4): H702-H715. [22] Otto CM, Bartkowiak J, Hahn RT. Right atrial pressure, not Doppler jet velocity, is the problem in estimating pulmonary pressure when tricuspid regurgitation is severe[J]. Heart, 2023. doi: 10.1136/heartjnl-2023-323230. [23] Thibault HB, Kurtz B, Raher MJ, et al. Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension[J]. Circ Cardiovasc Imaging, 2010, 3(2): 157-163. [24] Al-Qazazi R, Lima PDA, Prisco SZ, et al. Macrophage-NLRP3 activation promotes right ventricle failure in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2022, 206(5): 608-624. [25] Wu Z, Zhu L, Nie X, et al. USP15 promotes pulmonary vascular remodeling in pulmonary hypertension in a YAP1/TAZ-dependent manner[J]. Exp Mol Med, 2023, 55(1): 183-195. [26] Zhang X, Li J, Zeng D, et al. A novel method for measuring pulmonary artery pressure by high-frequency ultrasound-guided transthoracic puncture in rats[J]. Front Cardiovasc Med, 2022, 9: 995728. doi: 10.3389/fcvm.2022.995728. [27] 董政委, 樊官伟. 改良右心导管法测量大鼠肺动脉压力综述[J]. 实验动物与比较医学, 2020, 40(4): 354-359. DONG Zhengwei, FAN Guanwei. A review of modified right heart catheterization for measuring pulmonary artery pressure in rats[J]. Laboratory Animal and Comparative Medicine, 2020, 40(4): 354-359. [28] Krishnan A, Markham R, Savage M, et al. Right heart catheterisation: how to do it[J]. Heart Lung Circ, 2019, 28(4): e71-e78. |
[1] | 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-. |
[2] | 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-. |
[3] | 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-. |
[4] | 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32. |
[5] | 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26. |
[6] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[7] | 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23. |
[8] | 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21. |
[9] | 曾媛媛,杨东鹏,董柱,张本,曹一秋,王晓武. 川芎嗪对野百合碱诱导大鼠肺动脉高压的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(11): 63-69. |
[10] | 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60. |
[11] | 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62. |
[12] | 王海鹏,邹娟娟,高春苗,王孝,王岩,李延忠. OSAHS慢性间歇性低氧大鼠模型的建立及意义[J]. 山东大学学报 (医学版), 2021, 59(2): 7-13. |
[13] | 安袁笑雪,赵玉英,赵翠芬,许瑞英,薛玉文. 合并型甲基丙二酸血症并发肺动脉高压2例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(10): 103-109. |
[14] | 张霁娟,于汉成,王蓝,陈诺,崔书萌,高希宝. 高脂膳食、硒对大鼠抗氧化功能的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 95-101. |
[15] | 何天齐,李敏,王雪楠,王亚楠,李玉川,孙爽,赵海龙,王皓,陈大典,朱梅佳,王晓军,王敏,李秀华. 腺相关病毒在大鼠丘脑纹状体通路中的应用[J]. 山东大学学报 (医学版), 2020, 58(3): 65-74. |
|