您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (2): 20-28.doi: 10.6040/j.issn.1671-7554.0.2023.0987

• 基础医学 • 上一篇    

经膈肌穿刺法快速准确评估大鼠肺动脉高压

赵子辉1,2,3*,王旭阳2,3,4*,张鹏5,方宁宁5,石端博6,杨帆2,3,杨晓玫5,吴剑波2,3   

  1. 1.山东第二医科大学麻醉学院, 山东 潍坊 261053;2.山东第一医科大学第一附属医院麻醉科, 山东 济南 250014;3.山东省麻醉与呼吸重症研究所, 山东 济南 250014;4.山东大学齐鲁医学院, 山东 济南 250012;5.山东大学齐鲁医院麻醉科, 山东 济南 250012;6.山东大学齐鲁医院病理科, 山东 济南 250012
  • 发布日期:2024-03-29
  • 通讯作者: 吴剑波. E-mail:jianbowu@sdu.edu.cn杨晓玫. E-mail:yangxiaomeisdu@foxmail.com*共同第一作者
  • 基金资助:
    山东省自然科学基金(ZR2020MH012,2021M691944);山东省医学会舒适医用麻醉优化专项资金(YXH2021ZX015,YXH2020ZX007);中国博士后科学基金(2021M691944)

Rapid and accurate assessment of pulmonary hypertension in rats via diaphragmatic puncture method

ZHAO Zihui1,2,3*, WANG Xuyang2,3,4*, ZHANG Peng5, FANG Ningning5, SHI Duanbo6, YANG Fan2,3, YANG Xiaomei5, WU Jianbo2,3   

  1. 1. School of Anesthesiology, Shandong Second Medical University, Weifang 261053, Shandong, China;
    2. Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, China;
    3. Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, Jinan 250014, Shandong, China;
    4. School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    5. Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    6. Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2024-03-29

摘要: 目的 构建一种操作简单快捷、测量准确的大鼠右心室压力测定方法。 方法 采用随机方法将30只8~10周龄的雄性SD大鼠分为3组:经胸右心室穿刺测压组(trans-thoracic right ventricular puncture manometry group,TTM组,n=10),经膈肌穿刺测压组(trans-diaphragmatic puncture manometry group, TDM组,n=10)和野百合碱诱导肺动脉高压采用经膈肌穿刺测压组(monocrotaline-induced pulmonary hypertension with trans-diaphragmatic manometry group,MCT-TDM组,n=10)。MCT-TDM组经胸腹侧皮下注射野百合碱(60 mg/kg),TTM组和TDM组注射等体积的无菌生理盐水。模型建立4周后,使用经膈肌穿刺法测定TDM组和MCT-TDM组大鼠的右心室收缩压(right ventricular systolic pressure, RVSP),随后立即开胸验证穿刺点的准确性;使用经胸右心室穿刺法测定TTM组大鼠RVSP。比较两种测压方法操作时间、测压成功率、RVSP等指标。取大鼠心肺组织,分离左、右心室,并计算右心室肥厚指数(right ventricular hypertrophy index, RVHI)。最后,对左肺组织进行苏木精-伊红(hematoxylin eosin, HE)染色,评价肺部小血管病变程度。 结果 TTM组从麻醉开始到成功测出右心室压力的时间为(6.83±1.36)min,TDM组为(8.13±1.25)min,MCT-TDM组为(8.32±1.23)min。TTM组测压成功率为70%,TDM组测压成功率为100%,MCT-TDM组成功率为90%。TDM组和TTM组测得的RVSP、RVHI差异无统计学意义(P>0.05)。MCT-TDM组的RVSP及RVHI均显著高于TDM组(P<0.001)。MCT-TDM组大鼠肺小动脉管壁相较于TDM组明显增厚,管腔狭窄。 结论 采用膈肌穿刺法测量肺动脉高压大鼠的右心室压力,这种方法无需开胸,避免了昂贵设备的使用,能准确、快速、简便地测量右心室血流动力学,具有较高的推广价值。

关键词: 经膈肌穿刺法, 肺动脉高压, 右心室压力, 右心室收缩压, 大鼠

Abstract: Objective To establish a simple, rapid and accurate method to measure the right ventricular pressure in rats. Methods A total of 30 male SD rats aged 8-10 weeks were randomly divided into 3 groups: the trans-thoracic right ventricular puncture manometry group(TTM group, n=10), trans-diaphragmatic puncture manometry group(TDM group, n=10), and the monocrotaline-induced pulmonary hypertension with trans-diaphragmatic manometry group(MCT-TDM group, n=10). The MCT-TDM group underwent subcutaneous injection of monocrotaline through the thoracoabdominal side(60 mg/kg), while the TTM and TDM groups were injected with an equivalent volume of sterile saline. Four weeks after model establishment, the right ventricular systolic pressure(RVSP)of the TDM and MCT-TDM groups was measured using the trans-diaphragmatic puncture method, followed by thoracotomy to verify the accuracy of the puncture site; RVSP of the TTM group was measured using the trans-thoracic right ventricular puncture method. The operation time, success rate, and RVSP were compared between the two manometry methods. The hearts and lung tissues of the rats were extracted, left and right ventricles were separated, and the right ventricular hypertrophy index(RVHI)was calculated. Lastly, the left lung tissue was stained with hematoxylin and eosin(HE)to evaluate the extent of pulmonary microvascular lesions. Results The time taken from anesthesia to successful measurement of RVSP was(6.83±1.36)minutes for the TTM group,(8.13±1.25)minutes for the TDM group, and(8.32±1.23)minutes for the MCT-TDM group. The success rate were 70% for the TTM group, 100% for the TDM group, and 90% for the MCT-TDM group. There were no significant differences in RVSP and RVHI between the TDM and TTM groups(P>0.05). The RVSP and RVHI in the MCT-TDM group were significantly higher than those in the TDM group(P<0.001). In the MCT-TDM group, the pulmonary arterioles showed notable thickening of the vessel walls and narrowing of the lumens. Conclusion Measuring the right ventricular pressure with diaphragmatic puncture technique negates the need for thoracotomy and circumvents the use of costly equipment. It enables precise, swift, and straightforward assessment of the right ventricular hemodynamics, holding considerable value for widespread application.

Key words: Diaphragmatic puncture method, Pulmonary hypertension, Right ventricular pressure, Right ventricular systolic pressure, Rats

中图分类号: 

  • R543.2
[1] Olsson KM, Corte TJ, Kamp JC, et al. Pulmonary hypertension associated with lung disease: new insights into pathomechanisms, diagnosis, and management[J]. Lancet Respir Med, 2023, 11(9): 820-835.
[2] Johnson S, Sommer N, Cox-Flaherty K, et al. Pulmonary hypertension: a contemporary review[J]. Am J Respir Crit Care Med, 2023, 208(5): 528-548.
[3] Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Respir J, 2022, 43(38): 3618-3731.
[4] Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Respir J, 2023, 61(1): 2200879. doi: 10.1183/13993003.00879-2022.
[5] Jani V, Aslam MI, Fenwick AJ, et al. Right ventricular sarcomere contractile depression and the role of thick filament activation in human heart failure with pulmonary hypertension[J]. Circulation, 2023, 147(25): 1919-1932.
[6] Bauersachs J, Olsson KM. Targeting pulmonary hypertension in patients with heart failure and preserved ejection fraction: rather static than DYNAMIC development?[J]. Eur Heart J, 2022, 43(36): 3414-3416.
[7] Ambroz D, Jansa P, Kuchar J, et al. Predictors of survival in patients with pulmonary hypertension and acute right heart failure[J]. Bratisl Lek Listy, 2020, 121(3): 230-235.
[8] Chang KY, Duval S, Badesch DB, et al. Mortality in pulmonary arterial hypertension in the modern era: early insights from the pulmonary hypertension association registry[J]. J Am Heart Assoc, 2022, 11(9): e024969. doi: 10.1161/JAHA.121.024969.
[9] Maron BA, Brittain EL, Hess E, et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study[J]. Lancet Respir Med, 2020, 8(9): 873-884.
[10] Boucherat O, Agrawal V, Lawrie A, et al. The latest in animal models of pulmonary hypertension and right ventricular failure[J]. Circ Res, 2022, 130(9): 1466-1486.
[11] Bueno-Beti C, Sassi Y, Hajjar RJ, et al. Pulmonary artery hypertension model in rats by monocrotaline administration[J]. Methods Mol Biol, 2018, 1816: 233-241. doi:10.1007/9781-4939-8597-5-18.
[12] 张栾, 陈欧, 栾云, 等. Gemigliptin对野百合碱诱导的肺动脉高压大鼠治疗作用及炎症因子的影响[J]. 山东大学学报(医学版), 2017, 55(5): 19-22. ZHANG Luan, CHEN Ou, LUAN Yun, et al. Effects of gemigliptin on the therapeutic effect and inflammatory factors of monocrotaline-induced pulmonary arterial hypertension in rats[J]. Journal of Shandong University(Health Sciences), 2017, 55(5): 19-22+30.
[13] 彭小飞, 劳金泉, 刘冬立, 等. 右心室经胸穿刺测压法在肺动脉高压大鼠模型中的应用[J]. 中南医学科学杂志, 2018, 46(2): 197-200. PENG Xiaofei, LAO Jinqun, LIU Dongli, et al. Application of right ventricle pressure by right ventricle punctured through ghest in pulmonary hypertension rats model[J]. Medical Science Journal of Central South China, 2018, 46(2): 197-200.
[14] Nickel NP, Yuan K, Dorfmuller P, et al. Beyond the lungs: systemic manifestations of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2020, 201(2): 148-157.
[15] Mamazhakypov A, Hein L, Lother A. Mineralocorticoid receptors in pulmonary hypertension and right heart failure: From molecular biology to therapeutic targeting[J]. Pharmacol Ther, 2022, 231: 107987. doi: 10.1016/j.pharmthera.2021.107987.
[16] Zhou X, Jiang Y, Wang Y, et al. Endothelial FIS1 DeSUMOylation protects against hypoxic pulmonary hypertension[J]. Circ Res, 2023, 133(6): 508-531.
[17] Sangam S, Sun X, Schwantes-An TH, et al. SOX17 deficiency mediates pulmonary hypertension: at the crossroads of sex, metabolism, and genetics[J]. Am J Respir Crit Care Med, 2023, 207(8): 1055-1069.
[18] Cunningham CM, Li M, Ruffenach G, et al. Y-Chromosome Gene, Uty, protects against pulmonary hypertension by reducing proinflammatory chemokines[J]. Am J Respir Crit Care Med, 2022, 206(2): 186-196.
[19] Balistrieri A, Makino A, Yuan JX. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca(2+)signaling[J]. Physiol Rev, 2023, 103(3): 1827-1897.
[20] Lin Q, Kumar S, Kariyawasam U, et al. Human resistin induces cardiac dysfunction in pulmonary hypertension[J]. J Am Heart Assoc, 2023, 12(6): e027621. doi: 10.1161/JAHA.122.027621.
[21] Kwan ED, Vélez-Rendón D, Zhang X, et al. Distinct time courses and mechanics of right ventricular hypertrophy and diastolic stiffening in a male rat model of pulmonary arterial hypertension[J]. Am J Physiol Heart Circ Physiol, 2021, 321(4): H702-H715.
[22] Otto CM, Bartkowiak J, Hahn RT. Right atrial pressure, not Doppler jet velocity, is the problem in estimating pulmonary pressure when tricuspid regurgitation is severe[J]. Heart, 2023. doi: 10.1136/heartjnl-2023-323230.
[23] Thibault HB, Kurtz B, Raher MJ, et al. Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension[J]. Circ Cardiovasc Imaging, 2010, 3(2): 157-163.
[24] Al-Qazazi R, Lima PDA, Prisco SZ, et al. Macrophage-NLRP3 activation promotes right ventricle failure in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2022, 206(5): 608-624.
[25] Wu Z, Zhu L, Nie X, et al. USP15 promotes pulmonary vascular remodeling in pulmonary hypertension in a YAP1/TAZ-dependent manner[J]. Exp Mol Med, 2023, 55(1): 183-195.
[26] Zhang X, Li J, Zeng D, et al. A novel method for measuring pulmonary artery pressure by high-frequency ultrasound-guided transthoracic puncture in rats[J]. Front Cardiovasc Med, 2022, 9: 995728. doi: 10.3389/fcvm.2022.995728.
[27] 董政委, 樊官伟. 改良右心导管法测量大鼠肺动脉压力综述[J]. 实验动物与比较医学, 2020, 40(4): 354-359. DONG Zhengwei, FAN Guanwei. A review of modified right heart catheterization for measuring pulmonary artery pressure in rats[J]. Laboratory Animal and Comparative Medicine, 2020, 40(4): 354-359.
[28] Krishnan A, Markham R, Savage M, et al. Right heart catheterisation: how to do it[J]. Heart Lung Circ, 2019, 28(4): e71-e78.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-.
[3] 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-.
[4] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[5] 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26.
[6] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[7] 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23.
[8] 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21.
[9] 曾媛媛,杨东鹏,董柱,张本,曹一秋,王晓武. 川芎嗪对野百合碱诱导大鼠肺动脉高压的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(11): 63-69.
[10] 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60.
[11] 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62.
[12] 王海鹏,邹娟娟,高春苗,王孝,王岩,李延忠. OSAHS慢性间歇性低氧大鼠模型的建立及意义[J]. 山东大学学报 (医学版), 2021, 59(2): 7-13.
[13] 安袁笑雪,赵玉英,赵翠芬,许瑞英,薛玉文. 合并型甲基丙二酸血症并发肺动脉高压2例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(10): 103-109.
[14] 张霁娟,于汉成,王蓝,陈诺,崔书萌,高希宝. 高脂膳食、硒对大鼠抗氧化功能的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 95-101.
[15] 何天齐,李敏,王雪楠,王亚楠,李玉川,孙爽,赵海龙,王皓,陈大典,朱梅佳,王晓军,王敏,李秀华. 腺相关病毒在大鼠丘脑纹状体通路中的应用[J]. 山东大学学报 (医学版), 2020, 58(3): 65-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!