山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (6): 22-28.doi: 10.6040/j.issn.1671-7554.0.2022.0855
• 基础医学 • 上一篇
任慧欣1,郑茂金1,韩文灿1,王超群1,周云2,裴冬生1
REN Huixin1, ZHENG Maojin1, HAN Wencan1, WANG Chaoqun1, ZHOU Yun2, PEI Dongsheng1
摘要: 目的 探讨过氧化氢(H2O2)联合透明质酸钠是否可以提高宫颈癌细胞的放疗敏感性,并探讨其潜在机制。 方法 将细胞分为对照组、透明质酸钠组、4 Gy组、透明质酸钠+4 Gy组,Western blotting实验检测自噬相关蛋白水平。将细胞分为对照组,透明质酸钠组,200 μmol/L H2O2组、500 μmol/L H2O2组、700 μmol/L H2O2组和1 000 μmol/L H2O2组,CCK8实验检测H2O2对细胞活力的影响;将细胞分为对照组和200 μmol/L H2O2组,分别进行0、2、4、6、8 Gy放疗,克隆形成实验评估H2O2的放疗增敏作用。将细胞分为对照组、200 μmol/L H2O2组、4 Gy组、200 μmol/L H2O2+4 Gy组,Western blotting实验和免疫荧光实验检测自噬相关蛋白水平。 结果 对照组与透明质酸钠组的自噬相关蛋白LC3 II、p62 表达差异无统计学意义(P>0.05);4 Gy组与透明质酸钠+4 Gy组的自噬相关蛋白LC3 II、p62 表达差异无统计学意义(P>0.05)。CCK8实验结果表明,放疗前后,对照组和透明质酸钠组的细胞增殖率差异无统计学意义(P>0.05);与对照组相比,200 μmol/L H2O2组促进细胞增殖(P<0.05),500 μmol/L H2O2组对细胞增殖的影响无统计学意义(P>0.05),700 μmol/L H2O2组和1 000 μmol/L H2O2组抑制细胞增殖(P<0.05)。克隆形成实验结果表明,H2O2增加了细胞对放疗的敏感性(P<0.05)。Western blotting实验和免疫荧光实验表明,与对照组相比,200 μmol/L H2O2组抑制了自噬(P<0.05);与4 Gy组相比,200 μmol/L H2O2+4 Gy组促进了自噬(P<0.05)。与对照组相比,200 μmol/L H2O2组p-AKT和p-mTOR蛋白表达增加(P<0.05);与4 Gy组相比,200 μmol/L H2O2+4 Gy组p-AKT和p-mTOR的表达减少(P<0.05)。 结论 H2O2通过调控AKT/mTOR通路进而调控自噬来提高宫颈癌的放疗敏感性。
中图分类号:
[1] Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis [J]. Lancet Glob Health, 2020, 8(2): e191-e203. [2] Hata M. Radiation therapy for elderly patients with uterine cervical cancer: feasibility of curative treatment[J]. Int J Gynecol Cancer, 2019, 29(3): 622-629. [3] Mackay HJ, Wenzel L, Mileshkin L. Nonsurgical management of cervical cancer: locally advanced, recurrent, and metastatic disease, survivorship, and beyond[J]. Am Soc Clin Oncol Educ Book, 2015, 35(1): e299-e309. [4] Reum Son A, Kim DY, Hun Park S, et al. Direct chemotherapeutic dual drug delivery through intra-articular injection for synergistic enhancement of rheumatoid arthritis treatment[J]. Sci Rep, 2015, 5: 14713. doi: 10.1038/srep14713. [5] Noda T, Okuda T, Mizuno R, et al. Two-step sustained-release PLGA/hyaluronic acid gel formulation for intra-articular administration[J]. Biol Pharm Bull, 2018, 41(6): 937-943. [6] Ogawa Y, Kubota K, Aoyama N, et al. Non-surgical breast-conserving treatment(KORTUC-BCT)using a new radiosensitization method(KORTUC II)for patients with stage I or II breast cancer[J]. Cancers(Basel), 2015, 7(4): 2277-2289. [7] Aoyama N, Ogawa Y, Yasuoka M, et al. Therapeutic response to a novel enzyme-targeting radiosensitization treatment(KORTUC II)for residual lesions in patients with stage IV primary breast cancer, following induction chemotherapy with epirubicin and cyclophosphamide or taxane[J]. Oncol Lett, 2017, 13(1): 69-76. [8] Trombino S, Servidio C, Curcio F, et al. Strategies for hyaluronic acid-based hydrogel design in drug delivery[J]. Pharmaceutics, 2019, 11(8): 407. doi: 10.3390/pharmaceutics11080407. [9] Ogawa Y, Kubota K, Ue H, et al. Safety and effectiveness of a new enzyme-targeting radiosensitization treatment(KORTUC II)for intratumoral injection for low-LET radioresistant tumors[J]. Int J Oncol, 2011, 39(3): 553-560. [10] Gewirtz DA. The four faces of autophagy: implications for cancer therapy[J]. Cancer Res, 2014, 74(3): 647-651. [11] Asanuma K, Tanida I, Shirato I,et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis[J]. FASEB J, 2003, 17(9): 1165-1167. [12] Hu YL, Jahangiri A, Delay M, et al. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy[J]. Cancer Res, 2012, 72(17): 4294-4299. [13] 张小红,周云,杜秋莹,等. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报(医学版), 2021, 59(4): 28-34. ZHANG Xiaohong, ZHOU Yun, DU Qiuying, et al. Atg7-siRNA interferes with radiosensitivity of esophageal cancer ECA109 cells by regulating arginine circulation [J]. Journal of Shandong University(Health Sciences), 2021, 59(4): 28-34. [14] Wang X, Fu YF, Liu X, et al. ROS promote Ox-LDL-induced platelet activation by up-regulating autophagy through the inhibition of the PI3K/AKT/mTOR pathway[J]. Cell Physiol Biochem, 2018, 50(5): 1779-1793. [15] Liu S, Liao G, Li G. Regulatory effects of COL1A1 on apoptosis induced by radiation in cervical cancer cells[J]. Cancer Cell Int, 2017, 17(1): 1-9. [16] Tokuhiro S, Ogawa Y, Tsuzuki K, et al. Development of a novel enzyme-targeting radiosensitizer(KORTUC)containing hydrogen peroxide for intratumoral injection for patients with low linear energy transfer-radioresistant neoplasms[J]. Oncol Lett, 2010, 1(6): 1025-1028. [17] Ogawa Y, Kobayashi T, Nishioka A, et al. Reactive oxygen species-producing site in radiation and hydrogen peroxide-induced apoptosis of human peripheral T cells: involvement of lysosomal membrane destabilization[J]. Int J Mol Med, 2004, 13(5): 655-660. [18] Cuervo AM. Autophagy: in sickness and in health[J]. Trends Cell Biol, 2004, 14(2): 70-77. [19] Camuzard O, Santucci DS, Carle GF, et al. Autophagy in the crosstalk between tumor and microenvironment[J]. Cancer Lett, 2020, 490: 143-153. doi: 10.1016/j.canlet.2020.06.015. [20] Hou G, Jia A, Yang L, et al. OP16 induces deadly autophagy and apoptosis of cells by inhibiting Akt in esophageal squamous cell carcinoma[J]. Mol Cell Biochem, 2020, 472(1): 219-230. [21] Roy A, Bera S, Saso L, et al. Role of autophagy in tumor response to radiation: implications for improving radiotherapy[J]. Front Oncol, 2022, 12: 957373. doi: 10.3389/fonc.2022.957373. [22] Ramirez JZ, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy[J]. Life Sci, 2021, 265: 118745. doi: 10.1016/j.lfs.2020.118745. [23] Kang R, Zeh H, Lotze M, et al. The multifaceted effects of autophagy on the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1225: 99-114. doi: 10.1007/978-3-030-35727-6_7. [24] Mukhopadhyay S, Mahapatra KK, Praharaj PP, et al. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics[J]. Semin Cancer Biol, 2022, 85: 196-208. doi: 10.1016/j.semcancer.2021.09.003. [25] Wang L, Shi J, Liu S, et al. RAC3 inhibition induces autophagy to impair metastasis in bladder cancer cells via the PI3K/AKT/mTOR pathway[J]. Front Oncol, 2022, 12: 915240. doi: 10.3389/fonc.2022.915240. [26] Xu Z, Han X, Ou D, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy[J]. Appl Microbiol Biotechnol, 2020, 104(2): 575-587. |
[1] | 郑荣慧,李攀,曹秀琴,贺瑞霞,陈民佳,陈海霞,杨志伟. SQSTM1蛋白在嗜肺军团菌感染RAW264.7细胞自噬中的作用机制[J]. 山东大学学报 (医学版), 2023, 61(6): 10-21. |
[2] | 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10. |
[3] | 刘萌,侯丛哲,麻焕玉,张震,赵新蕊,张萍,朱琳. β-雌二醇对宫颈癌Hela细胞增殖的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 9-15. |
[4] | 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109. |
[5] | 陈泉材,韩赛,刘露,孙雨,尤学武,张俊华,张友忠. CDC7、MCM4在105例宫颈病变组织中的表达及意义[J]. 山东大学学报 (医学版), 2022, 60(1): 34-39. |
[6] | 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110. |
[7] | 王璐,赵新蕊,朱琳. 25例早期宫颈癌无瘤化免举宫腹腔镜子宫切除术临床效果[J]. 山东大学学报 (医学版), 2021, 59(6): 76-80. |
[8] | 张小红,周云,杜秋莹,任慧欣,王超群. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报 (医学版), 2021, 59(4): 28-34. |
[9] | 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27. |
[10] | 梁婷婷,杨勇霞,侯丛哲,黄太胜,王华丽,朱琳. PAX1基因甲基化与宫颈高级别上皮内病变及高危型HPV分型的关联性[J]. 山东大学学报 (医学版), 2021, 59(11): 48-52. |
[11] | 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6. |
[12] | 孙文凯,孙卉,邬信芳,高伟,孟朝暾,李钦. 自噬标志物Beclin-1和P62与增殖因子Ki67在鼻息肉不同部位的表达及其意义[J]. 山东大学学报 (医学版), 2020, 58(6): 76-82. |
[13] | 孙盼盼,赵旭,林小雯,傅志俭. 医用臭氧对大鼠骨关节炎软骨细胞中PPARγ及自噬水平表达的影响[J]. 山东大学学报 (医学版), 2020, 58(6): 14-21. |
[14] | 孙红林,韩波,王静,高聆,朱梅,姜殿东,吕建利. CD40siRNA调控c-Jun氨基末端激酶对自身免疫性心肌炎大鼠心肌细胞自噬的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 9-14. |
[15] | 熊超,刘力,冯建国,魏继承. 七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 25-30. |
|