您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 37-45.doi: 10.6040/j.issn.1671-7554.0.2022.1426

• 专家综述 • 上一篇    下一篇

人工智能在骨科疾病诊治中的研究进展

黄霖*(),车圳,李明,李玉希,宁庆   

  1. 中山大学孙逸仙纪念医院骨外科,广东 广州 510120
  • 收稿日期:2022-12-17 出版日期:2023-03-10 发布日期:2023-03-24
  • 通讯作者: 黄霖 E-mail:huangl5@mail.sysu.edu.cn
  • 作者简介:黄霖,医学博士、主任医师、博士研究生导师,广东省杰出青年医学人才。现任中山大学孙逸仙纪念医院外科副主任,中山大学设备与实验室管理处副处长。2001年毕业于中山医科大学,同年起任职于中山大学附属第二医院。作为国家公派访问学者于2010年6月至2011年6月在西澳大学骨科研究中心交流。学术兼职有中华医学会骨科学分会第十一届委员会青年委员会脊柱学组副组长、中国医师协会骨科医师分会脊柱外科学组委员、广东省医学会骨科分会副主任委员、广东省医师协会脊柱外科医师分会副主任委员、广东省医学教育协会第一届脊柱外科专委会副主任委员、白求恩公益基金会广东省骨科加速康复联盟副主任委员兼秘书长、吴阶平医学基金会创新骨科学部常务委员等。主持国家自然科学基金、广东省基础与应用基础研究基金、广州市市校(院)联合资助项目基础与应用基础研究项目、广州市科技计划项目-重点研发计划等多个项目。主要致力于脊柱退行性病变、脊柱肿瘤等脊柱外科疾病的基础与临床研究,并着力脊柱外科手术机器人功能模块研发与智能骨科等“医工结合”领域。在具有国际及国内影响力的期刊上发表英文及中文论文近百篇,参编参译骨科专著6部,主译《EMORY脊柱外科技巧图解》

Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases

Lin HUANG*(),Zhen CHE,Ming LI,Yuxi LI,Qing NING   

  1. Department of Orthopedic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
  • Received:2022-12-17 Online:2023-03-10 Published:2023-03-24
  • Contact: Lin HUANG E-mail:huangl5@mail.sysu.edu.cn

摘要:

人工智能是一门新的技术科学,它深入研究开发用于模拟延展和扩充人脑智能的理论、方式、核心技术及应用软件与控制系统。其专业领域内容涵盖了机器人、图像识别和专家系统等。人工智能技术在众多医学学科领域内都有着重要的应用价值。特别在骨科领域中,人工智能不仅提升了影像科医师与骨科医师的工作效率、降低了工作负荷,与此同时也为患者提供了更多安全可靠、有力的临床技术保障,给临床骨科疾病的诊断、治疗带来了极大推动。本文回顾了近几年来人工智能技术在骨科疾病中的最新研究成果,旨在综述人工智能技术在骨科诊断、治疗领域的最新进展和尚存局限,为促进人工智能技术和骨科领域新的深度融合提供文献参考。

关键词: 人工智能, 骨科, 成像, 诊断, 治疗

Abstract:

Artificial intelligence (AI) is a new technical science, which conducts deep research and development of theories, methods, core technologies, application software and control systems for the simulation, extension and expansion of human brain intelligence. Its professional fields include robotics, image recognition and expert systems, and so on. AI has an important application value in many medical disciplines, especially in orthopedics. It not only improves the working efficiency of imaging doctors and orthopedic surgeons and reduces the workload, but also provides more safe, reliable and powerful clinical technical support for patients, bringing a great promotion to the diagnosis and treatment of orthopedic diseases. This paper reviews the latest research achievements and limitations of AI in orthopedic diseases, aiming to provide literature reference for the deep integration of AI and orthopedics.

Key words: Artificial intelligence, Orthopedics, Imaging, Diagnosis, Treatment

中图分类号: 

  • R681.5
1 Kim EK , Kim HE , Han K , et al. Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study[J]. Sci Rep, 2018, 8 (1): 2762.
doi: 10.1038/s41598-018-21215-1
2 Lin L , Dou Q , Jin YM , et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291 (3): 677- 686.
doi: 10.1148/radiol.2019182012
3 Kann BH , Hosny A , Aerts HJWL . Artificial intelligence for clinical oncology[J]. Cancer Cell, 2021, 39 (7): 916- 927.
doi: 10.1016/j.ccell.2021.04.002
4 Lalehzarian SP , Gowd AK , Liu JN . Machine learning in orthopaedic surgery[J]. World J Orthop, 2021, 12 (9): 685- 699.
doi: 10.5312/wjo.v12.i9.685
5 Turkbey B , Haider MA . Deep learning-based artificial intelligence applications in prostate MRI: brief summary[J]. Br J Radiol, 2022, 95 (1131): 20210563.
doi: 10.1259/bjr.20210563
6 Shin HC , Roth HR , Gao M , et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35 (5): 1285- 1298.
doi: 10.1109/TMI.2016.2528162
7 Chen X , Liu Y . A classification method for thoracolumbar vertebral fractures due to basketball sports injury based on deep learning[J]. Comput Math Methods Med, 2022, 8747487.
doi: 10.1155/2022/8747487
8 朱晓龙, 黄婧潇, 邹殿俊, 等. 上颈椎损伤诊断及治疗中应用多层螺旋CT结合人工智能模式的效果分析[J]. 中国临床医生杂志, 2022, 50 (3): 348- 350.
doi: 10.3969/j.issn.2095-8552.2022.03.028
ZHU Xiaolong , HUANG Jingxiao , ZOU Dianjun , et al. Effect analysis of multi-slice spiral CT combined with artificial intelligence mode in diagnosis and treatment of upper cervical spine injury[J]. Chinese Journal for Clinicians, 2022, 50 (3): 348- 350.
doi: 10.3969/j.issn.2095-8552.2022.03.028
9 董浩, 经齐峰, 邱勇刚, 等. 基于深度学习人工智能辅助CT检测肋骨骨折的价值[J]. 浙江临床医学, 2022, 24 (6): 914- 915.
DONG Hao , JING Qifeng , QIU Yonggang , et al. The value of deep learning artificial intelligence assisted CT in detecting rib fractures[J]. Zhejiang Clinical Medical Journal, 2022, 24 (6): 914- 915.
10 徐传冰, 张琪, 赵佳, 等. 人工智能全自动肋骨骨折检测系统诊断效能研究[J]. 电子元器件与信息技术, 2022, 6 (2): 204- 206.
doi: 10.19772/j.cnki.2096-4455.2022.2.078
XU Chuanbing , ZHANG Qi , ZHAO Jia , et al. Study on diagnostic efficiency of artificial intelligence automatic rib fracture detection system[J]. Electronic Component and Information Technology, 2022, 6 (2): 204- 206.
doi: 10.19772/j.cnki.2096-4455.2022.2.078
11 刘想, 谢辉辉, 许玉峰, 等. 人工智能在胸部创伤肋骨骨折CT诊断中应用的初步研究[J]. 上海交通大学学报(医学版), 2021, 41 (7): 920- 925.
LIU Xiang , XIE Huihui , XU Yufeng , et al. Application of artificial intelligence to CT diagnosis of thoracic traumatic rib sites: a preliminary study[J]. Journal of Shanghai Jiao Tong University(Medical Science), 2021, 41 (7): 920- 925.
12 贾春雪, 张彬, 吴润泽, 等. 基于深度学习的人工智能在肋骨骨折检测中的应用价值[J]. 实用放射学杂志, 2020, 36 (11): 1861- 1864.
doi: 10.3969/j.issn.1002-1671.2020.11.039
JIA Chunxue , ZHANG Bin , WU Runze , et al. The value of artificial intelligence based on deep learning in rib fracture detection[J]. Journal of Practical Radiology, 2020, 36 (11): 1861- 1864.
doi: 10.3969/j.issn.1002-1671.2020.11.039
13 Yang J , Zhang K , Fan H , et al. Development and validation of deep learning algorithms for scoliosis screening using back images[J]. Commun Biol, 2019, 2, 390.
doi: 10.1038/s42003-019-0635-8
14 王征, 王岩, 毛克亚, 等. 脊柱数字化重建与快速成型对复杂脊柱畸形矫治的意义[J]. 中国脊柱脊髓杂志, 2006, 16 (3): 212- 214.
WANG Zheng , WANG Yan , MAO Keya , et al. Instructional application of digital spine and rapid prototype in complicated spinal deformity correction[J]. Chinese Journal of Spine and Spinal Cord, 2006, 16 (3): 212- 214.
15 Mathew R , Palatinus S , Padala S , et al. Neural networks for classification of cervical vertebrae maturation: a systematic review[J]. Angle Orthod, 2022, 92 (6): 796- 804.
doi: 10.2319/031022-210.1
16 赵晓阳, 许树林, 潘为领, 等. 公共人工智能平台在膝关节骨性关节炎分期中的应用[J]. 实用临床医药杂志, 2022, 26 (8): 22- 26.
ZHAO Xiaoyang , XU Shulin , PAN Weiling , et al. Application of public artificial intelligence platform in staging of knee osteoarthritis[J]. Journal of Clinical Medicine in Practice, 2022, 26 (8): 22- 26.
17 Brahim A , Jennane R , Riad R , et al. A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: data from the OsteoArthritis Initiative[J]. Comput Med Imaging Graph, 2019, 73, 11- 18.
doi: 10.1016/j.compmedimag.2019.01.007
18 Wu Y , Yang R , Jia S , et al. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping[J]. Biomed Mater Eng, 2014, 24 (6): 3379- 3388.
19 Bien N , Rajpurkar P , Ball RL , et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018, 15 (11): e1002699.
doi: 10.1371/journal.pmed.1002699
20 张先龙, 王坤正. 关节外科的未来——数字骨科技术在关节外科的应用[J]. 中华骨科杂志, 2021, 41 (8): 525- 531.
ZHANG Xianlong , WANG Kunzheng . The future of joint surgery: the application of digital orthopaedic technology in joint surgery[J]. Chinese Journal of Orthopaedics, 2021, 41 (8): 525- 531.
21 Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291(3): 677-686.
22 Lalehzarian SP , Gowd AK , Liu JN . Machine learning in orthopaedic surgery[J]. World J Orthop, 2021, 12 (9): 685- 699.
doi: 10.5312/wjo.v12.i9.685
23 Jones RM , Sharma A , Hotchkiss R , et al. Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs[J]. NPJ Digit Med, 2020, 3, 144.
doi: 10.1038/s41746-020-00352-w
24 Liu F , Zhou Z , Samsonov A , et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018, 289 (1): 160- 169.
doi: 10.1148/radiol.2018172986
25 杨辉, 胡凯, 夏建松, 等. 基于仿人类思维的骨科机器人核心架构设计与实现[J]. 中国医疗器械杂志, 2022, 46 (2): 156- 159.
doi: 10.3969/j.issn.1671-7104.2022.02.008
YANG Hui , HU Kai , XIA Jiansong , et al. Core architecture and clinical application of orthopedic robot based on human-like thinking[J]. Chinese Journal of Medical lnstrumentation, 2022, 46 (2): 156- 159.
doi: 10.3969/j.issn.1671-7104.2022.02.008
26 Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study[J]. Sci Rep, 2018, 8(1): 2762.
27 Liew C . The future of radiology augmented with Artificial Intelligence: a strategy for success[J]. Eur J Radiol, 2018, 102, 152- 156.
doi: 10.1016/j.ejrad.2018.03.019
28 崔翔, 张里程, 尹鹏滨, 等. 促进骨折康复治疗的人工智能可穿戴装备及控制方法: CN114947893A[P]. 2022-08-30.
29 Baumann F , Becker C , Freigang V , et al. Imaging, post-processing and navigation: surgical applications in pelvic fracture treatment[J]. Injury, 2022, 53 (Suppl 3): S16- S22.
30 张英泽. 智能微创手术的概念及其在创伤骨科中的应用[J]. 中华创伤杂志, 2017, 33 (8): 673- 674.
ZHANG Yingze . Concept of intelligent minimally invasive surgery and its application in traumatic orthopedics[J]. Chinese Journal of Trauma, 2017, 33 (8): 673- 674.
31 万超, 董圣杰, 王诗军, 等. 人工智能辅助手术规划系统在个体化全髋关节假体精准植入中的应用[J]. 骨科, 2022, 13 (3): 204- 211.
WAN Chao , DONG Shengjie , WANG Shijun , et al. Application of artificial intelligence assisted preoperative planning system for individualization and precise implantation of prosthesis in total hip arthroplasty[J]. Orthopaedics, 2022, 13 (3): 204- 211.
32 Abraham VM , Booth G , Geiger P , et al. Machine-learning models predict 30-day mortality, cardiovascular complications, and respiratory complications after aseptic revision total joint arthroplasty[J]. Clin Orthop Relat Res, 2022, 480 (11): 2137- 2145.
doi: 10.1097/CORR.0000000000002276
33 El-Galaly A , Grazal C , Kappel A , et al. Can machine-learning algorithms predict early revision TKA in the Danish knee arthroplasty registry?[J]. Clin Orthop Relat Res, 2020, 478 (9): 2088- 2101.
34 Lang Z , Han X , Fan M , et al. Posterior atlantoaxial internal fixation using Harms technique assisted by 3D-based navigation robot for treatment of atlantoaxial instability[J]. BMC Surg, 2022, 22 (1): 378.
35 Wang L , Li C , Wang Z , et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up[J]. J Robot Surg, 2022,
doi: 10.1007/s11701-022-01442-5
36 王含, 刘亚军, 范明星, 等. 机器人辅助经皮内镜下腰椎间盘切除术的初步疗效报告[J]. 中华骨科杂志, 2022, 42 (2): 84- 92.
WANG Han , LIU Yajun , FAN Mingxing , et al. Clinical outcomes of robot-assisted transforaminal percutaneous endoscopic lumbar discectomy[J]. Chinese Journal of Orthopaedics, 2022, 42 (2): 84- 92.
37 Fan M , Fang Y , Zhang Q , et al. A prospective cohort study of the accuracy and safety of robot-assisted minimally invasive spinal surgery[J]. BMC Surg, 2022, 22 (1): 47.
38 Zhang J , Li W , Hu L , et al. A robotic system for spine surgery positioning and pedicle screw placement[J]. Int J Med Robot, 2021, 17 (4): e2262.
39 Zhang Q , Xu YF , Tian W , et al. Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement[J]. Orthop Surg, 2019, 11 (5): 850- 856.
40 Molliqaj G , Schatlo B , Alaid A , et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery[J]. Neurosurg Focus, 2017, 42 (5): E14.
41 Shafi KA , Pompeu YA , Vaishnav AS , et al. Does robot-assisted navigation influence pedicle screw selection and accuracy in minimally invasive spine surgery?[J]. Neurosurg Focus, 2022, 52 (1): E4.
42 Du SY , Dai J , Zhou ZT , et al. Size selection and placement of pedicle screws using robot-assisted versus fluoroscopy-guided techniques for thoracolumbar fractures: possible implications for the screw loosening rate[J]. BMC Surg, 2022, 22 (1): 365.
43 Kim HJ , Jung WI , Chang BS , et al. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery[J]. Int J Med Robot, 2017, 13 (3): e1779.
44 郎昭, 王祺龙, 何达, 等. 机器人辅助超声磨钻牛脊柱椎体骨磨削参数研究[J]. 中华医学杂志, 2022, 102 (5): 370- 377.
LANG Zhao , WANG Qilong , HE Da , et al. Study on parameters of robot-assisted ultrasonic drilling on bovine vertebral body[J]. National Medical Journal of China, 2022, 102 (5): 370- 377.
45 Schatlo B , Molliqaj G , Cuvinciuc V , et al. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison[J]. J Neurosurg Spine, 2014, 20 (6): 636- 643.
46 Hsieh MK , Liu MY , Chen JK , et al. Use of longer sized screws is a salvage method for broken pedicles in osteoporotic vertebrae[J]. Sci Rep, 2020, 10 (1): 10441.
47 Sielatycki JA , Mitchell K , Leung E , et al. State of the art review of new technologies in spine deformity surgery-robotics and navigation[J]. Spine Deform, 2022, 10 (1): 5- 17.
48 Verma R , Krishan S , Haendlmayer K , et al. Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5, 992 pedicle screws[J]. Eur Spine J, 2010, 19 (3): 370- 375.
49 Khan A , Meyers JE , Yavorek S , et al. Comparing next-generation robotic technology with 3-dimensional computed tomography navigation technology for the insertion of posterior pedicle screws[J]. World Neurosurg, 2019, 123, e474- e481.
doi: 10.1016/j.wneu.2018.11.190
50 高宇, 翟吉良, 丁大伟, 等. 人工智能在骨科手术机器人中的应用与展望[J]. 中华骨与关节外科杂志, 2022, 15 (2): 155- 160.
GAO Yu , ZHAI Jiliang , DING Dawei , et al. Application and expectation of artificial intelligence in orthopedic surgical robot[J]. Chinese Journal Bone and Joint Surgery, 2022, 15 (2): 155- 160.
51 Wu J , Liu Z , Gou F , et al. BA-GCA net: boundary-aware grid contextual attention net in osteosarcoma MRI image segmentation[J]. Comput Intell Neurosci, 2022, 2022, 3881833.
doi: 10.1155/2022/3881833
52 田伟, 韩晓光, 张琦. 人工智能在骨科中的应用及展望[J]. 中华创伤骨科杂志, 2021, 23 (4): 277- 280.
TIAN Wei , HAN Xiaoguang , ZHANG Qi . Application and prospect of artificial intelligence in orthopedics[J]. Chinese Journal of Orthopaedic Trauma, 2021, 23 (4): 277- 280.
[1] 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61.
[2] 巩性军,吴树明,张供,李守先,庞昕焱. 无顶冠状静脉窦综合征的诊断和外科治疗[J]. 山东大学学报(医学版), 2209, 47(6): 129-.
[3] 王欣,邢春燕,杨艳平. 血清磷酸丙酮酸水合酶检测对诊断侵袭性白念珠菌感染的临床价值[J]. 山东大学学报(医学版), 2209, 47(6): 92-94.
[4] 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64.
[5] 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6.
[6] 刘亚军,郎昭,郭安忆,刘文勇. 骨科冲击波治疗的智能化发展现状及趋势分析[J]. 山东大学学报 (医学版), 2023, 61(3): 7-13.
[7] 王磊,张帅,刘钢,由胜男,王植,朱珊,陈超,马信龙,杨强. MRI诊断140例腰椎智能网络自动检测分型MCs方法的比较[J]. 山东大学学报 (医学版), 2023, 61(3): 71-79.
[8] 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133.
[9] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[10] 徐帅娅,罗芳琼,巴晨曦,张鑫茹,马喆. 多模态超声对70例BI-RADS 4类乳腺病变的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(2): 95-101.
[11] 董洪珍,陈佳民, 孙龙华. CT引导下经皮穿刺活检术诊断气道入路不适用的纵隔肿物1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(2): 125-129.
[12] 覃川,高如新,王新兴,张振海. 腹膜后门腔间隙单中心性Castleman病1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(2): 133-136.
[13] 马臣帮,高沛,常耀,毛昌琳,陈峰,朱可嘉,管勇,李善军,丁森泰. 非结节性硬化症双肾巨大血管平滑肌脂肪瘤精准诊断及同期两侧手术治疗1例及文献复习[J]. 山东大学学报 (医学版), 2023, 61(2): 65-71.
[14] 杨咏青,赵鹏,汪玉,马文静,田迷迷,程亚旎,祖璐,林祥涛. 细胞外容积分数对62例不同病理类型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(2): 88-94.
[15] 张忆朦,孙巧玲,杨向东. 过敏性紫癜合并视神经脊髓炎谱系疾病1例[J]. 山东大学学报 (医学版), 2023, 61(2): 137-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[6] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[7] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[8] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .