您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (11): 48-58.doi: 10.6040/j.issn.1671-7554.0.2022.1397

• • 上一篇    

应用Typodont系统对比滑动法和双钥匙曲法关闭拔牙间隙的牙列变化

韩迪1,2,3,郭泾1,2,3,4   

  1. 1.山东大学齐鲁医学院口腔医学院·口腔医院正畸科, 山东 济南 250012;2.山东省口腔组织再生重点实验室, 山东 济南 250012;3.山东省口腔生物材料与组织再生工程实验室, 山东 济南 250012;4.杭州医学院附属宁波口腔医院, 浙江 宁波 310001
  • 发布日期:2023-12-12
  • 通讯作者: 郭泾. E-mail:xiulizuo@gmail.com

Applying Typodont to compare the dentition changes in closing space of extractions between sliding straight wire technique and double keyhole loops

HAN Di1,2,3, GUO Jing1,2,3,4   

  1. 1. Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Shandong Key Laboratory of Oral Tissue Regeneration, Jinan 250012, Shandong, China;
    3. Shandong Engineering Laboratory for Dental Materials and Tissue Regeneration, Jinan 250012, Shandong, China;
    4. Ningbo Stomatological Hospital Affiliated to Hangzhou Medical College, Ningbo 310001, Zhejiang, China
  • Published:2023-12-12

摘要: 目的 利用电磁感应加热式Typodont 结合扫描仪,观察关闭间隙时使用滑动法和双钥匙曲法牙列的三维变化,并探索在同一加力方式下,加载不同力值对牙列的影响。 方法 在拔除第一前磨牙的标准Typodont上颌模型上黏接托槽,滑动组采用滑动直丝弓技术关闭拔牙间隙,分为平弓组和摇椅组;双钥匙组采用双钥匙曲法关闭间隙,分为前倾组和后倾组。设置250 g和300 g两种加载力值。重叠初始和实验后数字模型,分析牙冠标志点三维位移变化。 结果 (1)矢状向上,平弓组在250 g力值下与摇椅组U1、前倾组U1、后倾组U3、U7差异有统计学意义(P<0.05);300 g力值下与摇椅组U7、后倾组U1~U6差异有统计学意义(P<0.05)。力值增加,各实验组的前牙后退量无明显增加;后牙前移量均相应增加,除摇椅组U6、后倾组U7外(P<0.05),其他后牙变化差异无统计学意义(P>0.05)。(2)在冠唇(颊)舌倾度上,平弓组前牙区冠舌倾程度大于摇椅组,力值增加两组冠舌倾程度均增加。两力值下,所有实验组仅前倾组前牙表现冠唇倾,后倾组前牙在250 g力值时接近整体后退。加载250 g时仅摇椅组后牙区冠舌倾,其他3组后牙均冠颊倾。300 g时滑动组的U5、U6牙冠舌倾,U7牙冠颊倾,双钥匙组后牙均冠颊倾。(3)垂直向上,平弓组在250 g力值时除U7牙压入外前后牙都伸长,300 g力值时后牙伸长量明显增加(U6、U7:P<0.05)。摇椅组在250 g力值时前后牙少量压入,300 g时前牙表现伸长而后牙压入减少。前倾组可明显压低前牙,少量伸长后牙,力值增加前牙压低量减少,后牙伸长量明显增加(P<0.05)。后倾组可明显压低后牙,少量伸长前牙,力值增加前后牙变化差异无统计学意义(P>0.05)。 结论 (1)预置摇椅可在一定程度上减少滑动法前牙冠舌倾程度、后牙前移及伸长量。双钥匙曲法预置后倾弯可获得较强的后牙支抗,预置前倾弯可获得较强的前牙支抗,前、后倾可差异性地压低前、后牙,并利于内收过程中前牙冠舌倾的控制。(2)使用较大的力值并未见前牙内收量增加,但对后牙支抗及前牙转矩的控制有不利影响。

关键词: Typodont, 关闭拔牙间隙, 直丝弓滑动法, 双钥匙曲法, 三维方向变化

Abstract: Objective To observe the three-dimensional(3D)changes of the dentition between sliding straight wire technique and double keyhole loops with heat-induced Typodont system and scanner, and to explore the effects of loading forces on the dentition under the same methodology. Methods Brackets were bonded onto a standard Typodont maxillary model, with the first premolar extracted. The sliding technique group was divided into two subgroups: straight arch group and cruve arch group. The double keyhole group was also divided into two subgroups: tip-forward group and tip-back group. The initial and post-experiment digital models were overlapped, and 3D changes were analyzed using crown marker points. Results (1)Sagittal Changes: in the straight arch group, at 250 g force value, there was significant difference in U1 between the curve arch group and tip-forward group, and in U3 and U7 between tip-back group(P<0.05). At 300 g force value, only U7 in the curve arch group and U1-U6 in the tip-back group had statistical differences(P<0.05). When the force was increased, there was no significant increase in the anterior teeth retrusion, and the advancement of posterior teeth increased accordingly in all groups. However, there were no significant differences between posterior tooth changes, except for U6 in the curve arch group and U7 in the tip-back group(P<0.05). (2)Crown inclination lip(cheek)tongue degree: the amount of anterior lingual displacement in the straight arch group was more significant than that in the curve arch group. Crown lingual displacement increased in both groups with increasing force. Under two force values, only the tip-forward group's anterior teeth showed lip inclination displacement. The tip-back group anterior teeth were close to overall movement at 250 g. Under 250 g at the posterior tooth region, only the curve arch group shifted to the inclination of crown tongue, while the remaining three groups showed buccal displacement. Under 300 g, U5 and U6 in the sliding technique group showed crown tongue inclination, and U7 tooth showed crown buccal inclination. All posterior teeth in the double keyhole group showed buccal inclination. (3)Vertical changes: at 250 g, the straight arch group elongated all anterior and posterior teeth except U7. At 300 g, the posterior tooth elongation significantly increased(U6, U7: P<0.05). At 250 g, the curve arch group achieved a certain degree of intrusion in anterior and posterior teeth. At 300 g, anterior teeth showed elongation, and posterior teeth intrusion decreased. The tip-forward group significantly lowered the anterior teeth and slightly elongated the posterior teeth. When the force was increased, the anterior tooth intrusion reduced, while posterior tooth elongation increased significantly(P<0.05). The tip-back group exhibited significant posterior tooth intrusion and minor anterior tooth extrusion. The changes in anterior and posterior teeth were not statistically significant with increasing force(P>0.05). Conclusion (1)The sliding technique group using the rocking chair reduces the degree of anterior tooth tongue inclination, posterior tooth advancement and elongation to some extent. The double keyhole group with a preset backward inclination provides relatively firm posterior tooth anchorage, while the preset forward inclination provides relatively firm anterior tooth anchorage. The double keyhole group effectively controls anterior and posterior teeth independently and prevents anterior crown tongue inclination during adduction due to front and back tilts. (2) Using larger forces does not lead to an increase in anterior tooth retrusion, but it adversely affects posterior tooth anchorage and anterior tooth torque.

Key words: Typodont, Closing gap stage, Sliding straight wire technique, Double keyhole loops, Three-dimensional changes

中图分类号: 

  • R574
[1] DiBiase AT, Sandler PJ. Does orthodontics damage faces?[J]. Dent Update, 2001, 28(2): 98-102.
[2] Keim RG, Gottlieb EL, Nelson AH, et al. 2008 JCO study of orthodontic diagnosis and treatment procedures, part 1: results and trends[J]. Clin Orthod, 2008, 42(11): 625-640.
[3] Kuroda S, Okada T, Ishimitsu T, et al. Longitudinal craniofacial changes in Japanese adults with untreated maxillary and mandibular protrusions[J]. Orthod Waves, 2009, 68(4): 158-165.
[4] Pecora NG, Baccetti T, McNamara JA Jr. The aging craniofacial complex: a longitudinal cephalometric study from late adolescence to late adulthood[J]. Am J Orthod Dentofacial Orthop, 2008, 134(4): 496-505.
[5] Sangcharearn Y, Ho C. Effect of incisor angulation on overjet and overbite in class II camouflage treatment. A typodont study[J]. Angle Orthod, 2007, 77(6): 1011-1018.
[6] 王丽艳, 林珠, 施亮, 等. 切牙转矩对上颌骨性前突患者颌骨和软组织侧貌的影响[J]. 临床口腔医学杂志,2012, 28(7): 420-422. WANG Liyan, LIN Zhu, SHI Liang, et al. The effects of maxilla and profile in skeletal maxillary protrution malocclusion with incisors torque[J]. Journal of Clinical Stomatology, 2012, 28(7): 420-422.
[7] McLaughlin RP, Bennett JC. Evolution of treatment mechanics and contemporary appliance design in orthodontics: a 40-year perspective[J]. Am J Orthod Dentofacial Orthop, 2015, 147(6): 654-662.
[8] 张翼, 张磊, 樊瑜波, 等. 微植体支抗滑动法内收上颌前牙的三维有限元研究[J]. 华西口腔医学杂志, 2009, 27(5): 557-560. ZHANG Yi, ZHANG Lei, FAN Yubo, et al. Three dimensional finite element analysis of maxillary anterior teeth retraction with micro-implant anchor age and sliding mechanics[J]. West China Journal of Stomatology, 2009, 27(5): 557-560.
[9] Kim SJ, Kim JW, Choi TH, et al. Combined use of miniscrews and continuous arch for intrusive root movement of incisors in Class II division 2 with gummy smile[J]. Angle Orthod, 2014, 84(5): 910-918.
[10] Antoszewska-Smith J, Sarul M, Łyczek J, et al. Effectiveness of orthodontic miniscrew implants in anchorage reinforcement during en-masse retraction: a systematic review and meta-analysis[J]. Am J Orthod Dentofacial Orthop, 2017, 151(3): 440-455.
[11] Ruenpol N, Sucharitpwatskul S, Wattanawongskun P, et al. Force direction using miniscrews in sliding mechanics differentially affected maxillary central incisor retraction: finite element simulation and typodont model[J]. J Dent Sci, 2019, 14(2): 138-145.
[12] 罗晶, 王智伟, 惠娜娜, 等. 一步法和两步法关闭间隙对不同支抗影响的研究[J]. 实用口腔医学杂志, 2017, 33(2): 229-234. LUO Jing, WANG Zhiwei, HUI Nana, et al. The effects of en-masse retraction and two-step retraction on the anchorage variables[J]. Journal of Practical Stomatology, 2017, 33(2): 229-234.
[13] Rizk MZ, Mohammed H, Ismael O, et al. Effectiveness of en masse versus two-step retraction: a systematic review and meta-analysis[J]. Prog Orthod, 2018, 18(1): 41.
[14] Roth RH. Comment on Roth appliance[J]. Am J Orthod Dentofacial Orthop, 1993, 104(4): 24A-25A.
[15] Ziegler P, Ingervall B. A clinical study of maxillary canine retraction with a retraction spring and with sliding mechanics[J]. Am J Orthod Dentofac Orthop, 1989, 95(2): 99-106.
[16] 陈奇, 麦志辉, 陈正, 等. 双钥匙曲应用于上颌骨性前突病例初探[J]. 中华口腔医学研究杂志(电子版), 2014, 8(2): 149-154. CHEN Qi, MAI Zhihui, CHEN Zheng, et al. A pilot study of double keyhole loops in skeletal maxillary protrusion cases[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2014, 8(2): 149-154.
[17] 潘美珍, 肖珲, 何旭顺, 等. 双钥匙曲近中移动第一磨牙的临床应用[J]. 临床口腔医学杂志, 2017, 33(1): 21-23. PAN Meizhen, XIAO Hui, HE Xushun, et al. A study of double keyhole loops in mandibular first molar moving forward bodily[J]. Journal of Clinical Stomatology, 2017, 33(1): 21-23.
[18] 冯艳华.比较微种植体结合双钥匙曲法和低位牵引滑动法对前牙转矩的控制效果[J]. 现代口腔医学杂志,2017,31(4): 224-228. FENG Yanhua. Effect of micro implant combined with DKHL or low traction sliding mechanics on the control of anterior teeth[J]. Journal of Modern Stomatology, 2017, 31(4): 224-228.
[19] 李杨, 张莹, 秦蕴. 两种关闭拔牙间隙方法在正畸治疗中应用效果比较[J]. 中国现代药物应用, 2016, 10(12): 15-16. LI Yang, ZHANG Ying, QIN Yun. Comparison of application effects by two closure of extraction space measures in orthodontic treatment[J]. Chinese Journal of Modern Drug Application, 2016, 10(12): 15-16.
[20] Kim JY, Yu WJ, Koteswaracc PNK, et al. Effects of bracket slot size during en-masse retraction of the six maxillary anterior teeth using an induction-heating typodont simulation system[J]. Korean J Orthod, 2017, 47(3): 158-166.
[21] Kim TK, Kim KD, Baek SH. Comparison of frictional forces during the initial leveling stage in various combinations of self-ligating brackets and archwires with a custom-designed typodont system[J]. Am J Orthod Dentofacial Orthop, 2008, 133(2): 187.
[22] 蔡森鑫, 刘佳莉, 陈泽兴, 等. 双钥匙曲关闭下颌拔牙间隙的Typodont模型研究[J].口腔疾病防治, 2020, 28(10): 635-640. CAI Senxin, LIU Jiali, CHEN Zexing, et al. Typodont model study on double keyhole loop in mandibular extraction space closure[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(10): 635-640.
[23] Duarte MEA, Gribel BF, Spitz A, et al. Reproducibility of digital indirect bonding technique using three-dimensional(3D)models and 3D-printed transfer trays[J]. Angle Orthod, 2020, 90(1): 92-99.
[24] 田常生, 何平, 宋锦璘, 等. 基于Typodont模型的MDD与MBT矫治器排齐阶段切牙三维移动变化研究[J]. 中国生物医学工程学报, 2012, 31(4): 494-501. TIAN Changsheng, HE Ping, SONG Jinlin, et al. The typodont model based investigation on three-dimensional movement of incisors in alignment stage when applying MDD and MBT orthodontic brackets[J]. Chinese Journal of Biomedical Engineering, 2012, 31(4): 494-501.
[25] 安晓莉, 陈宏伟, 司庆宗, 等. 摇椅弓滑动法整体内收上颌前牙的三维有限元分析[J]. 华西口腔医学杂志, 2013, 31(1): 21-25. AN Xiaoli, CHEN Hongwei, SI Qingzong, et al. A three dimensional finite element analysis on en-masse retraction of maxillary anterior teeth by rocking-chair archwire in sliding mechanics[J]. West China Journal of Stomatology, 2013, 31(1): 21-25.
[26] Liu J, Zhang D, Xu L, et al. Mechanical force system of double key loop with finite element analysis[J]. BMC Oral Health, 2021, 21(1): 301.
[27] 郑志勋,翟敏,谢甜甜. 微型种植体支抗钉联合关闭曲法和滑动法关闭拔牙间隙的效果比较[J]. 中国医学创新, 2019, 16(30): 47-50. ZHENG Zhixun, ZHAI Min, XIE Tiantian, Comparison of the effect of mini-implant anchorage nail combined with closing curve method and sliding method of closing extraction space[J]. Medical Innovation of China, 2019, 16(30): 47-50.
[28] Rhee JN, Chun YS, Row J. A comparison between friction and frictionless mechanics with a new typodont simulation system[J]. Am J Orthod Dentofacial Ortho, 2001, 119(3): 292-299.
[29] Saporito I, Butti AC, Salvato A, et al. A “typodont” study of rate of orthodontic space closure: self-ligating systems vs. Conventional systems[J]. Minerva Stomatol, 2011, 60(11-12): 555-565.
[30] Hung BQ, Hong M, Yu W, et al. Comparison of inclination and vertical changes between single-wire and double-wire retraction techniques in lingual orthodontics[J]. Korean J Orthod, 2020, 50(1): 26-32.
[31] 武秀萍, Hee Moonkyung, 李冰, 等. “微种植体支抗双槽沟舌侧托槽”矫治系统前牙移动的磁感应Typodont实验[J]. 中国组织工程研究, 2017, 21(22): 3525-3530. WU Xiuping, Hee Moonkyung, LI Bing, et al. Anterior tooth movement of micro-implant-double slot lingual bracket system with Heat Induction Typodont System[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(22): 3525-3530.
[32] Dobranszki A, Vuolo JH, Neto FL, et al. Photoelastic study of the vertical control with double key loop archwire in the Straight wire technique[J]. Rev Dent Press De Ortodontia E Ortopedia Facial, 2009, 14(4): 123-128.
[33] 杜欣, 罗俊, 孟耕耘, 等. 因势利导: 细丝轻力矫治技术治疗骨性Ⅱ类错牙合一例[J]. 中华口腔正畸学杂志, 2021, 28(3): 173-176. DU Xin, LUO Jun, MENG Gengyun, et al. Make the best use of the situation: a case of skeletal class ⅱ malocclusion treated by filament light force correction technique[J]. Chinese Journal of Orthodontics, 2021, 28(3): 173-176.
[34] 傅民魁. 低摩擦轻力矫治系统[J]. 中国实用口腔科杂志, 2009, 2(1): 8-13. FU Minkui. Low friction low force orthodontic correction system[J]. Chinese Journal of Practical Stomatology, 2009, 2(1): 8-13.
[35] 江浩, 沈军, 徐建光. 低摩擦轻力矫治器与MBT矫治器拔牙矫治的牙齿移动分析[J]. 安徽医科大学学报, 2012, 47(11): 1356-1361. JIANG Hao, SHEN Jun, XU Jianguang. The analysis of the low friction and the MBT appliance during the tooth movement in extraction treatment[J]. Acta Universitatis Medicinalis Anhui, 2012, 47(11): 1356-1361.
[36] Tominaga JY, Ozaki H, Chiang PC, et al. Effect of bracket slot and archwire dimensions on anterior tooth movement during space closure in sliding mechanics: a 3-dimensional finite element study[J]. Am J Orthod Dentofacial Orthop, 2014, 146(2): 166-174.
[1] 韩丁培,严越,曹羽钦,孙昕,胡琰霞,汪敏娴,罗艳,施咏梅,谢青,杭钧彪,李鹤成. 加速康复外科理念在胸外科临床实践指导的瑞金医院专家共识[J]. 山东大学学报 (医学版), 2022, 60(11): 11-16.
[2] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
[3] 夏晓娜,黄召弟,任庆国,刘枫,邓贺,任国荣,段建东,王韶玉. CT双期增强扫描对182枚甲状腺良恶性结节的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(7): 57-62.
[4] 王宁,郭振江,张媛媛,王晶,郭伟,王金荣,崔朝勃. 定期超声检查在中心静脉置入设备相关深静脉血栓诊治中的应用价值[J]. 山东大学学报 (医学版), 2021, 59(7): 63-67.
[5] 司海朋,张文灿,李乐,周鑫. Kümmell's病的危险因素和诊治研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 25-32.
[6] 尹义龙,袭肖明. 眼科疾病智能诊断方法最新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 33-38.
[7] CheungCarol Y.,冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32, 38.
[8] 张洪彬,赵寒辉,王素霞,周鹏,贺青卿,王延群,丁伟平,柳刚. 303例甲状旁腺切除术围术期观察及术后严重低钙血症危险因素分析[J]. 山东大学学报 (医学版), 2020, 1(9): 14-20.
[9] 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87.
[10] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73.
[11] 尹义龙,袭肖明,孟宪静. 阿尔兹海默病的智能诊断方法[J]. 山东大学学报 (医学版), 2020, 1(8): 14-21.
[12] 宋立,张艳,刘洋,王丹. 随访2年观察1例新发突变的营养不良型大疱性表皮松解症[J]. 山东大学学报 (医学版), 2020, 1(8): 120-122.
[13] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66.
[14] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6.
[15] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!