您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (1): 6-12.doi: 10.6040/j.issn.1671-7554.0.2021.0449

• 基础医学 • 上一篇    下一篇

组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达

李卉,姜朝阳,刘岩,张曼   

  1. 沈阳医学院附属中心医院心血管内科, 辽宁 沈阳 110024
  • 发布日期:2022-01-08
  • 通讯作者: 张曼. E-mail:zhangm0046@163.com
  • 基金资助:
    沈阳市科学技术计划项目(20-205-4-031);辽宁省教育厅2020年度科学研究经费项目(SYYX202010);辽宁省普通本科高等学校校际合作项目(协同创新)(重大科研项目第185);沈阳医学院科学研究基金(20191005)

Effects and mechanism of histone deacetylase SIRT1 controlled macrophage apoptosis induced by oxidized low density lipoprotein

LI Hui, JIANG Chaoyang, LIU Yan, ZHANG Man   

  1. Department of Cardiovascular Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning, China
  • Published:2022-01-08

摘要: 目的 观察组蛋白H3赖氨酸残基9乙酰化(H3K9Ac)在氧化低密度脂蛋白(oxLDL)诱导的巨噬细胞凋亡模型中的表达,探讨组蛋白去乙酰化酶——炎症因子沉默信息调节蛋白1(SIRT1)对组蛋白乙酰化的影响,及其通过基因表观遗传学作用,经氧化物酶体增殖物激活受体γ(PPARγ)通路调控巨噬细胞凋亡的机制。 方法 培养BALB/c小鼠单核巨噬细胞(RAW264.7),并加入oxLDL构建巨噬细胞模型。将细胞分为对照组(加入双蒸水)和实验组(加入50 μg/mL oxLDL),分别检测两组细胞凋亡及白细胞介素(IL-6)、SIRT1、H3K9Ac和PPARγ的蛋白表达水平。另外,将实验组细胞分别给予SIRT1兴奋剂(白藜芦醇,终浓度50 nmoL/L)和SIRT1抑制剂(尼克酰胺,终浓度50 nmoL/L),观察SIRT1过表达或抑制对oxLDL诱导巨噬细胞模型中细胞凋亡及SIRT1、H3K9Ac、PPARγ和磷酸化过氧化物酶体增殖物激活受体γ(Ser112位点)[pPPARγ(S112)]的蛋白表达水平的影响。采用Hoechst荧光凋亡染色法检测各组细胞凋亡;采用Western blotting法检测各组细胞IL-6、SIRT1、H3K9Ac、PPARγ和pPPARγ(S112)的蛋白表达。 结果 (1)实验组细胞凋亡数(84.88±5.89)高于对照组(7.13±3.31)(P<0.01)。实验组IL-6蛋白相对表达水平(0.50±0.01)高于对照组(0.20±0.02)(P<0.01)。实验组SIRT1蛋白相对表达水平(0.20±0.01)低于对照组(0.30±0.02)(P<0.01)。实验组H3K9Ac蛋白相对表达水平(0.32±0.02)高于对照组(0.22±0.02)(P<0.01)。实验组PPARγ蛋白相对表达水平(0.11±0.02)低于对照组(0.20±0.03)(P<0.01)。(2)SIRT1兴奋剂组细胞凋亡数(28.63±6.44)低于实验组(84.88±5.89)(P<0.01);SIRT1抑制剂组细胞凋亡数(266.88±35.10)高于实验组(84.88±5.89)(P<0.01)。SIRT1兴奋剂组SIRT1蛋白相对表达水平(0.27±0.03)高于实验组(0.20±0.01)(P<0.01);SIRT1抑制剂组SIRT1蛋白相对表达水平(0.10±0.01)低于实验组(0.20±0.01)(P<0.01)。SIRT1兴奋剂组H3K9Ac蛋白相对表达水平(0.21±0.02)低于实验组(0.32±0.02)(P<0.01);SIRT1抑制剂组H3K9Ac蛋白相对表达水平(0.56±0.01)高于实验组(0.32±0.02)(P<0.01)。SIRT1兴奋剂组PPARγ蛋白相对表达水平(0.20±0.02)高于实验组(0.11±0.02)(P<0.01);SIRT1抑制剂组PPARγ蛋白相对表达水平(0.06±0.01)低于实验组(0.11±0.02)(P<0.01)。SIRT1兴奋剂组pPPARγ(S112)蛋白相对表达水平(0.04±0.00)低于实验组(0.12±0.02)(P<0.01);SIRT1抑制剂组pPPARγ(S112)蛋白相对表达水平(0.18±0.03)高于实验组(0.12±0.02)(P<0.01)。 结论 组蛋白乙酰化修饰异常的基因表观遗传学参与oxLDL暴露巨噬细胞凋亡的发生发展。在oxLDL诱导的巨噬细胞凋亡模型中,组蛋白去乙酰化酶SIRT1表达减少,使H3K9Ac呈高水平表达,而下游PPARγ呈低水平表达且PPARγ磷酸化表达增加。上调SIRT1可逆转上述因子表达,改善巨噬细胞凋亡。SIRT1对PPARγ存在正向调控作用,具有抗炎和抗凋亡作用,而这种作用不仅与组蛋白在基因转录水平调控PPARγ表达有关,还与其影响PPARγ翻译后磷酸化修饰相关。

关键词: 基因表观遗传学, 组蛋白, 组蛋白去乙酰化酶, 乙酰化修饰, 氧化物酶体增殖物激活受体γ, 凋亡

Abstract: Objective To observe the expression of histone H3 lysine residue 9 acetylation(H3K9Ac)in macrophage apoptosis model induced by oxidized low density lipoprotein(oxLDL), and to explore the controlling mechanism of histone deacetylase-inflammatory factor silencing information regulating protein1(SIRT1)on macrophage apoptosis by gene epigenetics, which was realized by peroxisome proliferator activated receptor γ(PPARγ)signaling pathway. Methods Mouse BALB/c macrophage cell line RAW264.7 was cultured with 50 μg/mL oxLDL. The cells were divided into control group(treated with double distilled water)and experimental group(treated with 50 μg/mL oxLDL). The number of apoptotic cells and protein expressions of interleukin(IL-6), SIRT1, H3K9Ac and PPARγ were detected. In addition, the experimental group was treated with SIRT1 stimulant(resveratrol, final concentration 50 nmoL/L)and SIRT1 inhibitor(nicotinamide, final concentration 50 nmoL/L). The apoptosis and protein expressions of SIRT1, H3K9Ac, PPARγ and phosphorylated peroxisome proliferator-activated receptor γ(Ser112 site)[pPPARγ(S112)] after SIRT1 overexpression or inhibition were detected. The cell apoptosis was detected with Hoechst fluorescence apoptosis staining. The protein expressions of IL-6, SIRT1, H3K9Ac, PPARγ and pPPARγ(S112)were detected with Western blotting. Results The number of apoptotic cells in the experimental group was higher than that in the control group [(84.88±5.89)vs(7.13±3.31), P<0.01]. The relative protein expressions of IL-6 and H3K9Ac in the experimental group were higher than those in the control group [(0.50±0.01)vs(0.20±0.02),(0.32±0.02)vs(0.20±0.03), P<0.01], while the relative protein expressions of SIRT1 and PPARγ in the experimental group were lower than those in the control group [(0.20±0.01)vs(0.30±0.02),(0.11±0.02)vs(0.20±0.03), P<0.01]. The number of apoptotic cells in the SIRT1 stimulant group was lower than that in the experimental group [(28.63±6.44)vs(84.88±5.89), P<0.01], while the number of apoptotic cells in the SIRT1 inhibitor group was higher than that in the experimental group [(266.88±35.10)vs(84.88±5.89), P<0.01]. In the SIRT1 stimulant group, the relative protein expressions of SIRT1 and PPARγ were higher than those in the experimental group [(0.27±0.03)vs(0.20±0.01),(0.20±0.02)vs.(0.11±0.02), P<0.01], while the expressions of H3K9Ac and pPPARγ(S112)were lower [(0.21±0.02)vs(0.32±0.02),(0.04±0.00)vs(0.12±0.02), P<0.01]. In the SIRT1 inhibitor group, the relative expressions of SIRT1 and PPARγ were lower than those in the experimental group [(0.10±0.01)vs(0.20±0.01),(0.06±0.01)vs(0.11±0.02), P<0.01], while the expressions of H3K9Ac and pPPARγ(S112)were higher [(0.56±0.01)vs(0.32±0.02),(0.18±0.03)vs(0.12±0.02), P<0.01]. Conclusion The gene epigenetics with abnormal histone acetylation modification is involved in the occurrence and development of macrophages apoptosis exposed to oxLDL. In oxLDL-induced macrophage apoptosis model, the expression of histone deacetylase SIRT1 decreases, resulting in a high expression of H3K9Ac, while the downstream PPARγ expressed at a low level and the expression of PPARγ phosphorylation increases. Up-regulation of SIRT1 can reverse the expression of those factors, and improve macrophage apoptosis. SIRT1 has positive regulation on PPARγ signal channel with the anti-inflammatory and anti-apoptosis effects, which are not only related to histone regulating PPARγ expression at gene transcription level, but also to the effects on PPARγ phosphorylation modification after post-translational.

Key words: Gene epigenetics, Histone, Histone deacetylation, Acetylation modification, Peroxisome proliferator activated receptor γ, Apoptosis

中图分类号: 

  • R331.3
[1] Ji YP, Shi TY, Zhang YY, et al. Essential oil from Fructus Alpinia zerumbet(fruit of Alpinia zerumbet(Pers.)Burtt.et Smith)protected against aortic endothelial cell injury and inflammation in vitro and in vivo [J]. J Ethnopharmacol, 2019, 237: 149-158. doi: 10.1016/j.jep.2019.03.011.
[2] GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J]. Lancet, 2017, 390(10100): 1211-1259.
[3] Qi XP, Chen XL, Wang XX. The expression of swiprosin-1 in atherosclerotic tissue and its influence on the apoptosis and the expression of inflammatory factors in macrophages [J]. Chin J Arterioscler, 2018, 26(5): 479-484.
[4] Svoboda P. A toolbox for miRNA analysis [J]. FEBS Lett, 2015, 589(14): 1694-1701.
[5] Schober A, Nazari-Jahantigh M, Weber C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis [J]. Nat Rev Cardiol, 2015, 12(6): 361-374.
[6] Blakeslee WW, Wysoczynski CL, Fritz KS, et al. Class I HDAC inhibition stimulates cardiac protein SUMOylation through a post-translational mechanism [J]. Cell Signal, 2014, 26(12): 2912-2920.
[7] Li H, Li X, Lin H, et al. High HDAC9 is associated with poor prognosis and promotes malignant progression in pancreatic ductal adenocarcinoma [J]. Mol Med Rep, 2020, 21(2): 822-832.
[8] Póciennikowska A, Hromada-Judycka A, Borzcka K, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling [J]. Cell Mol Life Sci, 2015, 72(3): 557-581.
[9] Lim S, Lee KS, Lee JE, et al. Effect of a new PPARγ agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis [J]. Atherosclerosis, 2015, 243(1): 107-119.
[10] Imai S, Guarente L. NAD+ and sirtuins in aging and disease [J]. Trends Cell Biol, 2014, 24(8): 464-471.
[11] Cai W, Yang T, Liu H, et al. Peroxisome proliferator-activated receptor γ(PPARγ): a master gatekeeper in CNS injury and repair [J]. Prog Neurobiol, 2018, 163/164: 27-58.doi: 10.1016/j.pneurobio.2017.10.002.
[12] Villapol S. Roles of peroxisome proliferator-activated receptor γ on brain and peripheral inflammation [J]. Cell Mol Neurobiol, 2018, 38(1): 121-132.
[13] Han L, Shen WJ, Bittner S, et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part Ⅰ: PPAR-A [J]. Future Cardiol, 2017, 13(3): 259-278.
[14] Krajewski WA. “Direct” and “Indirect” effects of histone modifications: modulation of sterical bulk as a novel source of functionality [J]. Bioessays, 2020, 42(1): e1900136.
[15] Yan X, Pan B, Lv T, et al. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis [J]. J Biomed Sci, 2017, 24(1): 1.
[16] Huang H, Lin S, Garcia BA, et al. Quantitative proteomic analysis of histone modifications [J]. Chem Rev, 2015, 115(6): 2376-2418.
[17] Hua P, Liu JL, Tao J, et al. Influence of caspase-3 silencing on the proliferation and apoptosis of rat bone marrow mesenchymal stem cells under hypoxia [J]. Int J Exp Med, 2015, 8(2): 1624-1633.
[18] Blakeslee WW, Wysoczynski CL, Fritz KS, et al. Class I HDAC inhibition stimulates cardiac protein SUMOylation through a post-translational mechanism [J]. Cell Signal, 2014, 26(12): 2912-2920.
[19] 李双月, 刘淇麒, 冯馨. 组蛋白去乙酰化酶3与血管内皮细胞的关系[J]. 吉林医药学院学报, 2018, 39(3): 201-203.
[20] 钟磊, 师健友, 白兰. 组蛋白去乙酰化酶抑制剂JNJ-26481585抗食管癌活性及其作用机制研究[J]. 中国药理学通报, 2019, 35(4): 561-565.
[21] Jiang X, Ye X, Guo W, et al. Inhibition of HDAC3 promotes ligand-independent PPAR-γ activation by:protein acetylation [J]. J Mol Endocrinol, 2014, 53(2): 191-200.
[22] Li B, Chen MJ, Guo L, et al. Endogenous 2-arachidonoylglycerol alleviates cyclooxygenases-2 elevation-mediated neuronal injury from SO2 inhalation via PPARγ pathway [J]. Toxicol Sci, 2015, 147(2): 535-548.
[23] Mayoral R, Osborn O, McNelis J, et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity [J]. Molecular Metabolism, 2015, 4(5): 378-391.
[24] Qiao L, Guo Z, Bosco C, et al. Maternal high-fat feeding increases placental lipoprotein lipase activity by reducing SIRT1 expression in mice [J]. Diabetes, 2015, 64(9): 3111-3120.
[25] Jang MJ, Ui-Hyun Park, Jeong Woo Kim, et al. CACUL1 reciprocally regulates SIRT1 and LSD1 to repress PPARγ and inhibit adipogenesis [J]. Cell Death Dis, 2017, 8(12): 3201.
[26] Yang F, Melo-Braga MN, Larsen MR, et al. Jorgensen, Giuseppe Palmisano. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics [J]. Mol Cell Proteomics, 2013, 12(9): 2497-2508.
[27] Donnell PE, Ye XZ, DeChellis MA, et al. Lipodystrophy, diabetes and normal serum insulin in PPARγ-deficient neonatal mice [J]. PLoS One, 2016, 11(8): e0160636.
[28] Zhong Q, Zhao S, Yu B, et al. High-density lipoprotein increases the uptake of oxidized low density lipoprotein via PPARγ/CD36 pathway in inflammatory adipocytes [J]. Int J Biol Sci, 2015, 11(3): 256-265.
[29] Tian LF, Wang CG, Michael Gormley, et al. Acetylation-defective mutants of PPARγ is associated with decreased lipid synthesis in breast cancer cells [J]. Oncotarget, 2014, 5(17): 7303-7315.
[1] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[2] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[3] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[4] 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9.
[5] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[6] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[7] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[8] 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62.
[9] 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34.
[10] 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47.
[11] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
[12] 王冰玉,杨阳,晁岚. TOLL样受体4在15例子宫腺肌病中的表达及作用[J]. 山东大学学报 (医学版), 2020, 58(6): 47-52.
[13] 孙盼盼,赵旭,林小雯,傅志俭. 医用臭氧对大鼠骨关节炎软骨细胞中PPARγ及自噬水平表达的影响[J]. 山东大学学报 (医学版), 2020, 58(6): 14-21.
[14] 王莹,张雅菲,文勇. 过表达YAP基因通过PI3K/AKT/mTOR信号通路促进舌鳞癌增殖[J]. 山东大学学报 (医学版), 2020, 58(2): 21-28.
[15] 史丽,马静,赵喜娃,关英霞,赵连梅,单保恩. miR-25-3p在40例子宫内膜腺癌组织中的表达及对KLE细胞生物学功能的影响[J]. 山东大学学报 (医学版), 2020, 58(12): 86-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[2] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[3] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[4] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[5] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[6] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[7] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[8] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[9] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .
[10] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .