山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (1): 13-20.doi: 10.6040/j.issn.1671-7554.0.2021.1002
徐菲菲1,2,陈庆文1,2,王东琴1,2,丁必骁1,2,吴昊1,杨宇民3
XU Feifei1,2, CHEN Qingwen1,2, WANG Dongqin1,2, DING Bixiao1,2, WU Hao1, YANG Yumin3
摘要: 目的 应用南通大学神经再生重点实验室自主构建的壳聚糖人工神经导管桥接修复模型大鼠面神经缺损,评价其在面神经功能恢复及再生中的作用。 方法 24只大鼠分为3组,每组8只,建立大鼠右侧面神经上颊支缺损模型,分别采用自体神经翻转桥接(自体神经组)、壳聚糖神经导管桥接(壳聚糖组)和离断旷置处理(离断组)。运用触须运动评分评估处理后2、4、6、8、10、12周3组大鼠面神经相应支配功能恢复情况,免疫组织化学双染法及透射电镜观察对侧正常神经及处理后12周大鼠造模侧神经的髓鞘与轴突的直径、厚度及层数。 结果 触须运动评分经广义线性混合效应模型(GLMMs)分析后,分组及时间主效应有统计学意义(P<0.05),分组和时间的交互效应有统计学意义(P<0.05),自体神经组、壳聚糖组分别于处理后4、6周开始出现触须运动功能恢复表现,术后12周自体神经组、壳聚糖组触须运动功能评分差异无统计学意义(P>0.05),离断组触须运动功能无恢复;形态学观察和透射电镜显示自体神经组、壳聚糖组均出现再生神经,自体神经组、壳聚糖组与对侧正常神经三者相比有髓神经纤维直径(F=36.734,P<0.05)、髓壳厚度(F=67.307,P<0.05)、再生髓壳层数(F=75.213,P<0.05)差异有统计学意义;壳聚糖组的有髓神经纤维直径、髓壳厚度和再生髓鞘层数与自体神经组相比差异有统计学意义(P<0.05)。 结论 动物实验结果表明,该壳聚糖人工神经导管具有促进面神经损伤再生和功能恢复的作用,为临床修复除坐骨神经、桡神经等以外的其他组织周围神经的应用研究提供了依据。
中图分类号:
[1] Tieman TE, Chaiet SR, Luijmes R, et al. A closer look at the paralyzed face; a narrative review of the neurobiological basis for functional and aesthetic appreciation between patients with a left and a right peripheral facial palsy [J]. J Plast Reconstr Aesthet Surg, 2020, 73(8): 1434-1441. [2] Lee LN, Lyford-Pike S, Boahene K. Traumatic facial nerve injury [J]. Otolaryngol Clin North Am, 2013, 46(5): 825-839. [3] Chang YS, Choi JE, Kim SW, et al. Prevalence and associated factors of facial palsy and lifestyle characteristics: data from the Korean National Health and Nutrition Examination Survey 2010-2012 [J]. BMJ Open, 2016, 6(11): e012628. doi: 10.1136/bmjopen-2016-012628. [4] Wang C, Chen J, Li J. Masseter nerve-innervated free gracilis muscle transfer for smile reanimation in adults [J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2021, 56(5): 465-470. [5] Lin MY, Manzano G, Gupta R. Nerve allografts and conduits in peripheral nerve repair [J]. Hand Clin, 2013, 29(3): 331-348. [6] de Faria SD, Testa JRG, Borin A, et al. Standardization of techniques used in facial nerve section and facial movement evaluation in rats [J]. Braz J Otorhinolaryngol, 2006, 72(3): 341-347. [7] May M. Trauma to the facial nerve [J]. Otolaryngol Clin North Am, 1983, 16(3): 661-670. [8] 黄辰, 许明敏, 李瑛, 等.大鼠面神经功能评价方法研究进展[J]. 中华中医药杂志, 2019, 34(9): 4196-4200. HUANG Chen, XU Mingmin, LI Ying, et al. Research progress on evaluation methods of facial nerve function in rats [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(9): 4196-4200. [9] Melvin TAN, Limb CJ. Overview of facial paralysis: current concepts [J]. Facial Plast Surg, 2008, 24(2): 155-163. [10] 韩维举, 韩东一. 周围性面瘫 [J]. 中华耳科学杂志, 2010, 8(1): 110-116. [11] Wusiman P, Maimaitituerxun B, Saimaiti A, et al. Epidemiology and pattern of oral and maxillofacial trauma [J]. J Craniofac Surg, 2020, 31(5): e517-e520. doi: 10.1097/SCS.0000000000006719. [12] Abbaszadeh-Kasbi A, Kouhi A, Ashtiani MTK, et al. Conservative versus surgical therapy in managing patients with facial nerve palsy due to the temporal bone fracture [J]. Craniomaxillofac Trauma Reconstr, 2019, 12(1): 20-26. [13] Chen J, Ji C, Yang C, et al. Temporal bone fracture and its complications [J]. Chin J Traumatol, 2001, 4(2): 106-109. [14] Breun M, Nickl R, Perez J, et al. Vestibular schwannoma resection in a consecutive series of 502 cases via the retrosigmoid approach: technical aspects, complications, and functional outcome [J]. World Neurosurg, 2019, 129: e114-e127. doi: 10.1016/j.wneu.2019.05.056. [15] Tawfik KO, Coulter M, Alexander TH, et al. Delayed facial palsy after resection of vestibular Schwannoma: An Analysis of Long-term Facial Nerve Outcomes [J]. Otol Neurotol, 2021, 42(6): e764-e770. doi: 10.1097/MAO.0000000000003158. [16] Samii M, Gerganov V, Samii A. Improved preservation of hearing and facial nerve function in vestibular schwannoma surgery via the retrosigmoid approach in a series of 200 patients [J]. J Neurosurg, 2006, 105(4): 527-535. [17] 胡炯炯, 周梁, 马兆鑫. 面神经最佳吻合术手术时机选择的电生理研究[J]. 中国医药导报, 2012, 9(3): 33-34. HU Jiongjiong, ZHOU Liang,MA Zhaoxin. Electrophysiological study of the best timing of facial nerve anastomosis surgery [J]. China Medical Herald, 2012, 9(3): 33-34. [18] 汪照炎. 面瘫修复的研究进展[J]. 中国耳鼻咽喉颅底外科杂志, 2020, 26(1): 18-23. WANG Zhaoyan. Advances in facial reanimation [J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2020, 26(1): 18-23. [19] Kudibal MT, Weltz TK, Larsen MB, et al. Treatment of mechanically induced nerve injuries [J]. Ugeskr Laeger, 2019, 181(8): V09180646. [20] Langhals NB, Urbanchek MG, Ray A, et al. Update in facial nerve paralysis: tissue engineering and new technologies [J]. Curr Opin Otolaryngol Head Neck Surg, 2014, 22(4): 291. [21] Gaudin R, Knipfer C, Henningsen A, et al. Approaches to peripheral nerve repair: generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery [J]. BioMed Res int, 2016, 2016: 3856262.doi: 10.1155/2016/3856262. [22] Bozkurt A, Lassner F, O’Dey D, et al. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves [J]. Biomaterials, 2012, 33(5): 1363-1375. [23] Raoofi A, Sadeghi Y, Piryaei A, et al. Bone marrow mesenchymal stem cell condition medium loaded on PCL nanofibrous scaffold promoted nerve regeneration after sciatic nerve transection in male rats [J]. Neurotox Res, 2021, 39(5): 1470-1486. [24] Ma Y, Gao H, Wang H, et al. Engineering topography: effects on nerve cell behaviors and applications in peripheral nerve repair [J]. J Mater Chem B, 2021, 9(32): 6310-6325. [25] Sarhan WA, Azzazy HM. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects [J]. Carbohydr Poly, 2015, 122: 135-143. doi: 10.1016/j.carbpol.2014.12.051. [26] Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction [J]. Exp Neurol, 2019, 319: 112761. doi: 10.1016/j.expneurol.2018.05.016. [27] Gu Y, Zhu J, Xue C, et al. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps [J]. Biomaterials, 2014, 35(7): 2253-2263. [28] Wang Y, Zhao Y, Sun C, et al. Chitosan degradation products promote nerve regeneration by stimulating Schwann cell proliferation via miR-27a/FOXO1 axis [J]. Mol Neurobiol, 2016, 53(1): 28-39. [29] Zhao Y, Wang Y, Gong J, et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments [J]. Biomaterials, 2017, 134: 64-77. doi: 10.1016/j.biomaterials.2017.02.026. [30] Yang Y, Zhao W, He J, et al. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent [J]. Eur J Pharm Biopharm, 2011, 79(3): 519-525. [31] Saffari S, Saffari TM, Ulrich DJO, et al. The interaction of stem cells and vascularity in peripheral nerve regeneration [J]. Neural Regen Res, 2021, 16(8): 1510-1517. [32] Li Y, Yu Z, Men Y, et al. Laminin chitosan PLGA conduit co transplanted with Schwann and neural stem cells to repair the injured recurrent laryngeal nerve [J]. Exp Ther Med, 2018, 16(2): 1250-1258. [33] Gnavi S, Barwig C, Freier T, et al. The use of chitosan-based scaffolds to enhance regeneration in the nervous system [J]. Int Rev Neurobiol, 2013, 109: 1-62. doi: 10.1016/B978-0-12-420045-6.00001-8. [34] Xue C, Hu N, Gu Y, et al. Joint use of a chitosan/PLGA scaffold and MSCs to bridge an extra large gap in dog sciatic nerve [J]. Neurorehabil Neural Repair, 2012, 26(1): 96-106. [35] Gu Y, Li Z, Huang J, et al. Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering [J]. J Tissue Eng Regen Med, 2017, 11(8): 2250-2260. |
[1] | 朱丽娜,蓝菁,李传花,王志峰. 断冠粘接术在年轻恒牙复杂冠折修复中临床应用1例报告[J]. 山东大学学报 (医学版), 2022, 60(9): 129-132. |
[2] | 王洲洋,江蓓,李宪花,甄军晖,杨向东,胡昭,刘广义,裴斐. 感染性心内膜炎、急性肾损伤伴PR3-ANCA阳性患者1例报道[J]. 山东大学学报 (医学版), 2022, 60(2): 60-64. |
[3] | 葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制[J]. 山东大学学报 (医学版), 2021, 59(9): 51-56. |
[4] | 章露文,范锐心,常颖,张晴. 微生态制剂肠内营养对43例重型颅脑损伤患者的疗效[J]. 山东大学学报 (医学版), 2021, 59(6): 111-116. |
[5] | 江勇,宋剑刚,朱大侠,刘礼剑. 柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 14-21. |
[6] | 韩婷, 杜菁, 于佳莉, 郑文舟, 王燕. 47例撕脱性损伤恒牙再植后牙根吸收的影响因素分析[J]. 山东大学学报 (医学版), 2020, 1(8): 115-119. |
[7] | 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15-23. |
[8] | 李松林,刘培来,卢群山,马贺然. 胫骨高位截骨术联合自体脂肪间充质干细胞注射在膝关节软骨修复中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 82-88. |
[9] | 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6. |
[10] | 程瑞林,黄政,李正勋,张宁,胡勇,徐文鹏. 小切口腓肠肌腱翻瓣术治疗5例陈旧性跟腱断裂[J]. 山东大学学报 (医学版), 2020, 58(6): 92-96. |
[11] | 胡昭,王强. 新型冠状病毒感染相关性肾损伤[J]. 山东大学学报 (医学版), 2020, 58(3): 26-31. |
[12] | 鞠秀丽. 间充质干细胞治疗新型冠状病毒肺炎的潜在机制和研究进展[J]. 山东大学学报 (医学版), 2020, 58(3): 32-37. |
[13] | 涂玉凤,赵馥. 噬血细胞综合征伴急性肾损伤1例[J]. 山东大学学报 (医学版), 2019, 57(6): 117-121. |
[14] | 朱锡德,孟凡国,张建宁. 细孔钻颅微创治疗老年创伤性脑内血肿[J]. 山东大学学报 (医学版), 2019, 57(3): 69-74. |
[15] | 孙晶晶,张江伟,匡培丹,张颖,薛武军,郑瑾. DRSAb对缺血再灌注损伤大鼠肾脏的保护作用[J]. 山东大学学报 (医学版), 2018, 56(7): 21-27. |
|