山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (10): 18-24.doi: 10.6040/j.issn.1671-7554.0.2020.1585
隋荣翠1,韩书慧1,张宪昭2,范新泰1,王娜1,侯凌霄1,许安廷1
SUI Rongcui1, HAN Shuhui1, ZHANG Xianzhao2, FAN Xintai1, WANG Na1, HOU Lingxiao1, XU Anting1
摘要: 目的 探讨C57BL/6小鼠内淋巴囊原代上皮细胞中电压门控钙离子通道定位表达。 方法 选取2日龄C57BL/6(P2B6)小鼠60只,P2B6小鼠8只麻醉处死取得颞骨标本,体视显微镜下定位内淋巴囊位置,提取内淋巴囊原代细胞并在低血清状态下培养。P2B6小鼠52只处理同上,颞骨标本用4%甲醛固定后脱钙包埋,采用免疫组织荧光技术和免疫细胞荧光技术定性原代内淋巴囊上皮细胞并确定L型钙离子通道表达。 结果 内淋巴囊上皮细胞在P2B6小鼠内淋巴囊中排列紧密,可见细胞聚集呈嵴状突起,胞体较小,细胞呈椭圆状,以扁平上皮为主,细胞培养光镜观察为不规则铺路石样,细胞形态大小不一,胞浆丰富,核椭圆形且大。免疫荧光检测显示L型Ca2+通道在内淋巴囊上皮细胞膜上均呈均匀表达,细胞核上高表达。 结论 小鼠原代内淋巴囊上皮细胞中L-型电压依赖钙离子通道α1C亚基(CACNA1C)、L-型电压依赖钙离子通道α1S亚基(CACNA1S)、L-型电压依赖钙离子通道α1D亚基(Cav1.3/ CACNA1D)表达为阳性,为细胞功能学实验提供依据,有利于进一步研究内淋巴囊维持稳态的机制。
中图分类号:
[1] 丁大雄, 杨风波, 吕萍, 等. 3种常用啮齿类实验动物内淋巴囊解剖定位差异[J]. 解放军医学院学报, 2015, 36(10): 1039-1041. DING Daxiong, YANG Fengbo, LYU Ping, et al. Anatomical appearances of endolymphatic sac in three laboratory rodents[J]. Academic Journal of PLA Medical School, 2015, 36(10): 1039-1041. [2] 丁大雄, 杨风波, 吕萍. 豚鼠、大鼠和小鼠内淋巴囊组织学的差异[J]. 听力学及言语疾病杂志, 2013, 23(5): 497-499. [3] 刘建平, 王正敏, 戴春富. 内淋巴囊外科手术应用解剖及其意义[J]. 中国眼耳鼻喉科杂志, 2005, 5(1): 23-24. LIU Jianping, WANG Zhengmin, DAI Chunfu. The anatomy of endolymphatic sac surgery and its significance[J]. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2005, 5(1): 23-24. [4] 朱杭军, 王光辉, 王秋萍, 等. 乙状窦后径路耳内镜下内淋巴囊手术的应用解剖[J]. 中国耳鼻咽喉颅底外科杂志, 2008, 14(6): 416-418. ZHU Hangjun, WANG Guanghui, WANG Qiuping, et al. The anatomy of endolymphatic sac surgery under otoscope through posterior sigmoid sinus approach[J]. Chinese Journal of Otorhinolaryngology-skull Base Surgery, 2008, 14(6): 416-418. [5] Raft S, Andrade LR, Shao D, et al. Ephrin-B2 governs morphogenesis of endolymphatic sac and duct epithelia in the mouse inner ear[J]. Dev Biol, 2014, 390(1): 51-67. [6] Matsubara A, Miyashita T, Inamoto R, et al. Presence of adrenergic in rat endolymphatic sac epithelial cells[J]. J Membr Biol, 2013, 246(2): 109-114. [7] Couloigner V, Teixeira M, Sterkers O, et al. The endolymphatic sac: its roles in the inner ear[J]. Med Sci(Paris), 2004, 20(3): 304-310. [8] Arnold W, Altermatt HJ. The significance of the human endolymphatic sac and its possible role in Menière's disease[J]. Acta Otolaryngol Suppl, 1995, 519: 36-42. doi: 10.3109/00016489509121868. [9] Kämpfe Nordström C, Danckwardt-Lillieström N, Laurell G, et al. The human endolymphatic sac and inner ear immunity: macrophage interaction and molecular expression[J]. Front Immunol, 2019, 9: 3181. doi: 10.3389/fimmu.2018.03181. [10] Møller MN, Kirkeby S, Cayé-Thomasen P. Innate immune defense in the inner ear-mucines are expressed by the human endolymphatic sac[J]. J Anat, 2017, 230(2): 297-302. [11] Liu W, Kämpfe Nordström C, Danckwardt-Lillieström N, et al. Human inner ear immune activity: a super-resolution immunohistochemistry study[J]. Front Neurol, 2019, 10: 728. doi: 10.3389/fneur.2019.00728. [12] Eckhard AH, Zhu M, O'Malley JT, et al. Inner ear pathologies impair sodium-regulated ion transport in Meniere's disease[J]. Acta Neuropathol, 2019, 137(2): 343-357. [13] Mizukoshi F, Bagger-Sjöbäck D, Rask-Andersen H, et al. Cytochemical localization of Na-K ATPase in the guinea pig endolymphatic sac[J]. Acta Otolaryngol, 1988, 105(3-4): 202-208. [14] Teixeira M, Couloigner V, Loiseau A, et al. Evidence for apical K conductance and Na-K-2Cl cotransport in the endolymphatic sac of guinea pig[J]. Hear Res, 1999, 128(1-2): 45-50. [15] Kim SH, Kim BG, Kim JY, et al. Electrogenic transport and K(+)ion channel expression by the human endolymphatic sac epithelium[J]. Sci Rep, 2015, 5: 18110. doi: 10.1038/srep18110. [16] Yamauchi D, Raveendran NN, Pondugula SR, et al. Vitamin D upregulates expression of ECaC1 mRNA in semicircular canal[J]. Biochem Biophys Res Commun, 2005, 331(4): 1353-1357. [17] Nakaya K, Harbidge DG, Wangemann P, et al. Lack of pendrin HCO3- transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels[J]. Am J Physiol Renal Physiol, 2007, 292(5): 1314-1321. [18] Wangemann P, Nakaya K, Wu T, et al. Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model[J]. Am J Physiol Renal Physiol, 2007, 292(5): 1345-1353. [19] 何白慧, 杨军. 梅尼埃病内淋巴囊手术不同术式的机制[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(1): 91-95. HE Baihui, YANG Jun. A review of endolymphatic sac-related surgeries and their possible mechanisms[J]. Journal of clinical otorhinolaryngology head and neck surgery, 2020, 34(1): 91-95. [20] Cooper MW, Kaylie DM. Is endolymphatic sac surgery beneficial for Menieres disease?[J]. Laryngoscope, 2020, 130(12): 2738-2739. [21] Bojrab DI 2nd, LaRouere MJ, Bojrab DI, et al. Endolymphatic sac decompression with intra-sac dexamethasone injection in Menière's disease[J]. Otol Neurotol, 2018, 39(5): 616-621. [22] Kim SH, Nam GS, Choi JY. Pathophysiologic findings in the human endolymphatic sac in endolymphatic hydrops: functional and molecular evidence[J]. Ann Otol Rhinol Laryngol, 2019, 128(6suppl): 76-83. [23] Sterkers O, Ferrary E, Amiel C. Production of inner ear fluids[J]. Physiol Rev, 1988, 68(4): 1083-1128. [24] Wackym PA, Friberg U, Bagger-Sjöbäck D, et al. Human endolymphatic sac: possible mechanisms of pressure regulation[J]. J Laryngol Otol, 1987, 101(8): 768-779. [25] Nordström CK, Danckwardt-Lillieström N, Liu W, et al. "Reversed polarization" of Na/K-ATPase-a sign of inverted transport in the human endolymphatic sac: a super-resolution structured illumination microscopy(SR-SIM)study[J]. Cell Tissue Res, 2020, 379(3): 445-457. [26] Mori N, Miyashita T, Inamoto R, et al. Ion transport its regulation in the endolymphatic sac: suggestions for clinical aspects of Menieres disease[J]. Eur Arch Otorhinolaryngol, 2017, 274(4): 1813-1820. [27] Tsujikawa S, Yamashita T, Tomoda K, et al. Effects of acetazolamide on acid-base balance in the endolymphatic sac of the guinea pig[J]. Acta Otolaryngol Suppl, 1993, 500: 50-53. doi: 10.3109/00016489309126179. [28] Stankovic KM, Brown D, Alper SL, et al. Localization of pH regulating proteins H+ATPase and Cl-/HCO-3 exchanger in the guinea pig inner ear[J]. Hear Res, 1997, 114(1-2): 21-34. [29] Couloigner V, Loiseau A, Sterkers O, et al. Effect of locally applied drugs on the endolymphatic sac potential[J]. Laryngoscope, 1998,108(4 Pt 1):592-598. [30] Mori N, Wu D. Low-amiloride-affinity Na+ channel in the epithelial cells isolated from the endolymphatic sac of guinea-pigs[J]. Pflugers Arch, 1996, 433(1-2): 58-64. [31] Wu D, Mori N. Outward K+ current in epithelial cells isolated from intermediate portion of endolymphatic sac of guinea pigs[J]. Am J Physiol, 1996, 271(5 Pt 1): 1765-1773. [32] Teixeira M, Couloigner V, Loiseau A, et al. Evidence for apical K conductance and Na-K-2Cl cotransport in the endolymphatic sac of guinea pig[J]. Hear Res, 1999, 128(1-2): 45-50. [33] Taguchi D, Takeda T, Kakigi A, et al. Expressions of aquaporin-2, vasopressin type 2 receptor, transient receptor potential channel vanilloid(TRPV)1, and TRPV4 in the human endolymphatic sac[J]. Laryngoscope, 2007, 117(4): 695-698. [34] Asmar MH, Gaboury L, Saliba I. Ménière's disease pathophysiology: endolymphatic sac immunohistochemical study of aquaporin-2, V2R vasopressin receptor, NKCC2, and TRPV4[J]. Otolaryngol Head Neck Surg, 2018, 158(4): 721-728. [35] Bächinger D, Egli H, Goosmann MM, et al. Immunolocalization of calcium sensing and transport proteins in the murine endolymphatic sac indicates calciostatic functions within the inner ear[J]. Cell Tissue Res, 2019, 378(2): 163-173. [36] Hescheler J, Schultz G. Nonselective cation channels: physiological and pharmacological modulations of channel activity[J]. EXS, 1993, 66: 27-43. doi: 10.1007/978-3-0348-7327-7_2. [37] Miyashita T, Tatsumi H, Furuta H, et al. Calcium-sensitive nonselective cation channel identified in the epithelial cells isolated from the endolymphatic sac of guinea pigs[J]. J Membr Biol, 2001, 182(2): 113-122. |
[1] | 杨晓倩 季静 刘娜 郭冬梅 崔癉. 三氯化铁及络合铁的抗银屑病作用研究[J]. 山东大学学报(医学版), 2209, 47(6): 114-117. |
[2] | 段淑红 刘凯 尹海燕 赵世斗 刘丰韬. 凝集素受体WGA、RCA和ECL在过量维甲酸致昆明小鼠腭裂发生中的作用[J]. 山东大学学报(医学版), 2209, 47(6): 47-. |
[3] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[4] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[5] | 菅天孜,陈诺,李理想,李延青,李艳. D-甘露糖和葡萄糖在溃疡性结肠炎小鼠中的作用[J]. 山东大学学报 (医学版), 2022, 60(3): 24-28. |
[6] | 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15-23. |
[7] | 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6. |
[8] | 王冉冉,朱天瑞,张凤,王敏,闵傲雪,李恒,李晓红. 长期淫羊藿苷治疗对APP/PS1小鼠神经炎症的影响[J]. 山东大学学报 (医学版), 2020, 58(4): 71-77. |
[9] | 蔡秋景,张倩,何学佳,孙文丽,郭爱丽,张楠,朱薇薇. 气道平滑肌细胞通过TGF-β1/Smad3信号通路调节IL-33的表达参与哮喘[J]. 山东大学学报 (医学版), 2020, 58(4): 78-83. |
[10] | 万秀霞,孙秀萍,佟晶洁. 大黄酚对结肠癌的抗肿瘤作用[J]. 山东大学学报 (医学版), 2019, 57(5): 74-79. |
[11] | 王聪,朱玲,万云焱,姚周虹,李德志,许小婷,徐鹏飞,林殿杰. 重组人血管内皮抑制素不同给药途径联合顺铂对小鼠Lewis肺癌的疗效[J]. 山东大学学报 (医学版), 2019, 57(5): 93-98. |
[12] | 苏晓慧,孙明琪,张梅洁,方丽,罗丹丹,陈国平,于春晓,管庆波. 穗加精液分析自动检测系统与血细胞计数板人工计数法在小鼠精液分析中的应用[J]. 山东大学学报 (医学版), 2018, 56(6): 1-5. |
[13] | 张同超,王志萍. 二硫化碳通过改变卵巢黄体巨噬细胞极化和功能导致胚胎植入障碍[J]. 山东大学学报 (医学版), 2018, 56(2): 80-87. |
[14] | 马晓,王淑娥,蔡云汐,刘厚福,何天玉,赵长峰. 全黑麦粉对实验型糖尿病小鼠降血糖的作用[J]. 山东大学学报 (医学版), 2018, 56(2): 88-92. |
[15] | 焦凤萍,王玉,于爱莲,田兆菊,杨树林. 重组质粒pcDNA3.1(-)-P6-gBCTL-TBK-1的免疫效果评价[J]. 山东大学学报(医学版), 2017, 55(3): 75-78. |
|