山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (5): 74-79.doi: 10.6040/j.issn.1671-7554.0.2018.1332
• • 上一篇
万秀霞1,孙秀萍2,佟晶洁2
WAN Xiuxia1, SUN Xiuping2, TONG Jingjie2
摘要: 目的 探讨大黄酚对结肠癌的抗癌作用。 方法 以CCK-8测定细胞活性,Tunel法和Annexin V-FITC/PI法检测细胞凋亡,Western blotting测定蛋白表达;建立移植瘤小鼠模型,观察小鼠体质量以及肿瘤体积变化。 结果 细胞实验中,发现2、5 μmol/L浓度的大黄酚可以使Tunel阳性率由(1.3±0.3)%分别增加到(8.5±1.3)%和(18.6±2.9)%(n=3,F=66.7,P<0.01),Annexin V-FITC/PI凋亡率由(4.2±0.3)%增至(9.6±1.3)%和(19.2±2.6)%(n=3,F=60.83,P<0.01); HCT116结肠癌细胞48 h活性下降为(77.2±6.5)%和(61.3±7.2)%(n=3,F=5.97,P<0.01);Caspase-9和Caspase-3特异性抑制剂使大黄酚诱导的细胞凋亡率由(19.2±2.6)%下降为(6.0±0.4)%和(7.2±0.6)% (n=3,F=56.37,P<0.01);日剂量给予10 mg/kg和20 mg/kg大黄酚能够抑制小鼠移植瘤体积(n=6,F=9.48~13.79,P<0.01),并促进移植瘤凋亡,凋亡率由(1.8±0.5)%上升至(9.7±1.6)% 和(16.3±3.0)%(n=3,F=40.16,P<0.01)。 结论 大黄酚在结肠癌临床治疗中具有潜在价值。
中图分类号:
[1] Siegel RL, Fedewa SA, Anderson WF, et al. Colorectal cancer incidence patterns in the united states, 1974-2013[J]. J Natl Cancer Inst, 2017, 109(8). doi: 10.1093/jnci/djw322 [2] Malczak P, Mizera M, Torbicz G, et al. Is the laparoscopic approach for rectal cancer superior to open surgery? A systematic review and meta-analysis on short-term surgical outcomes[J]. Wideochir Inne Tech Maloinwazyjne, 2018, 13(2): 129-140. [3] 冯斐, 燕锦, 袁萍, 等. 饮食习惯、生活方式与结直肠癌关系的配对病例对照研究[J]. 山东大学学报(医学版), 2013, 51(7): 107-112. FENG Fei, YAN Jin, YUAN Ping, et al. Relationships between dietary, lifestyle and colorectal cancer: a matched case-control study [J]. Journal of Shandong University(Health Science)2013, 51(7): 107-112. [4] 中华人民共和国卫生和计划生育委员会医政医管局. 中国结直肠癌诊疗规范(2017年版)[J]. 中华外科杂志, 2018, 10(3): 1-21. [5] Lutz MP, Zalcberg JR, Glynne-Jones R, et al. Second St. Gallen european organisation for research and treatment of cancer gastrointestinal cancer conference: consensus recommendations on controversial issues in the primary treatment of rectal cancer [J]. Eur J Cancer, 2016, 63: 11-24. doi: 10.1016/j.ejca.2016.04.010. [6] Chang H, Jiang W, Ye WJ, et al. Is long interval from neoadjuvant chemoradiotherapy to surgery optimal for rectal cancer in the era of intensity-modulated radiotherapy? a prospective observational study [J]. Onco Targets Ther, 2018, 2018: 6129-6138. doi: 10.2147/OTT.S169985. [7] Treder M, Janssen S, Holländer NH, et al. Role of Neoadjuvant radio-chemotherapy for the treatment of high rectal cancer [J]. Anticancer Res, 2018, 38(9): 5371-5377. [8] Walming S, Asplund D, Block M, et al. Patients with rectal cancer are satisfied with in-hospital communication despite insufficient information regarding treatment alternatives and potential side-effects [J]. Acta Oncol, 2018, 57(10): 1311-1317. [9] Campian JL, Ye X, Sarai G, et al. Severe treatment-related lymphopenia in patients with newly diagnosed rectal cancer [J]. Cancer Invest, 2018, 36(6): 356-361. [10] Khalid S, Khalid A, Clark BA, et al. Dosage adjustments for chemotherapy and targeted therapies in colorectal and pancreatic cancer patients with hepatic Impairment [J]. Cureus, 2018, 10(6): e2798. doi:10.7759/cureus.2798 [11] Wen Q, Mei L, Ye S, et al. Chrysophanol demonstrates anti-inflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-gamma [J]. Int Immunopharmacol, 2018, 56: 90-97. doi: 10.1016/j.intimp.2018.01.023. [12] Orban-Gyapai O, Liktor-Busa E, Kusz N, et al. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus [J]. Fitoterapia, 2017, 118: 101-106. doi: 10.1016/j.fitote.2017.03.009. [13] Zhao Y, Fang Y, Zhao H, et al. Chrysophanol inhibits endoplasmic reticulum stress in cerebral ischemia and reperfusion mice [J]. Eur J Pharmacol, 2018, 818: 1-9. doi: 10.1016/j.ejphar.2017.10.016. [14] Zhao Y, Fang Y, Li J, et al. Neuroprotective effects of Chrysophanol against inflammation in middle cerebral artery occlusion mice [J]. Neuroscience letters, 2016, 630: 16-22. doi: 10.1016/j.neulet.2016.07.036. [15] Lian Y, Xia X, Zhao H, et al. The potential of chrysophanol in protecting against high fat-induced cardiac injury through Nrf2-regulated anti-inflammation, anti-oxidant and anti-fibrosis in Nrf2 knockout mice [J]. Biomed Pharmacother, 2017, 93: 1175-1189. doi:10.1016/j.biopha.2017.05.148. [16] Zhang K, Liu J, You X, et al. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice [J]. Neurosci Lett, 2016, 613: 60-65. doi: 10.1016/j.neulet.2015.12.043. [17] Ren L, Li Z, Dai C, et al. Chrysophanol inhibits proliferation and induces apoptosis through NF-kappaB/cyclin D1 and NF-kappaB/Bcl-2 signaling cascade in breast cancer cell lines [J]. Molecular medicine reports, 2018, 17(3): 4376-4382. [18] Park S, Lim W, Song G. Chrysophanol selectively represses breast cancer cell growth by inducing reactive oxygen species production and endoplasmic reticulum stress via AKT and mitogen-activated protein kinase signal pathways [J]. Toxicol Appl Pharmacol, 2018, 360: 201-211. doi: 10.1016/j.taap.2018.10.010. [19] Lim W, An Y, Yang C, et al. Chrysophanol induces cell death and inhibits invasiveness via mitochondrial calcium overload in ovarian cancer cells [J]. J Cell Biochem, 2018, 119(12): 10216-10227. [20] Lim W, Yang C, Bazer FW, et al. Chrysophanol induces apoptosis of choriocarcinoma through regulation of ROS and the AKT and ERK1/2 pathways [J]. J Cell Physiol, 2017, 232(2): 331-339. [21] Ni CH, Yu CS, Lu HF, et al. Chrysophanol-induced cell death(necrosis)in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential [J]. Environ Toxicol, 2014, 29(7): 740-749. [22] Ni CH, Chen PY, Lu HF, et al. Chrysophanol-induced necrotic-like cell death through an impaired mitochondrial ATP synthesis in Hep3B human liver cancer cells [J]. Arch Pharm Res, 2012, 35(5): 887-895. [23] Lu CC, Yang JS, Huang AC, et al. Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells [J]. Mol Nutr Food Res, 2010, 54(7): 967-976. [24] Chung C. Restoring the switch for cancer cell death: Targeting the apoptosis signaling pathway [J].Am J Health Syst Pharm, 2018, 75(13): 945-952. [25] McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? [J]. Trends Cell Biol, 2018, 28(6): 475-493. |
[1] | 杨晓倩 季静 刘娜 郭冬梅 崔癉. 三氯化铁及络合铁的抗银屑病作用研究[J]. 山东大学学报(医学版), 2209, 47(6): 114-117. |
[2] | 段淑红 刘凯 尹海燕 赵世斗 刘丰韬. 凝集素受体WGA、RCA和ECL在过量维甲酸致昆明小鼠腭裂发生中的作用[J]. 山东大学学报(医学版), 2209, 47(6): 47-. |
[3] | 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19. |
[4] | 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-. |
[5] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[6] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[7] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[8] | 菅天孜,陈诺,李理想,李延青,李艳. D-甘露糖和葡萄糖在溃疡性结肠炎小鼠中的作用[J]. 山东大学学报 (医学版), 2022, 60(3): 24-28. |
[9] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[10] | 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89. |
[11] | 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62. |
[12] | 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34. |
[13] | 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47. |
[14] | 隋荣翠,韩书慧,张宪昭,范新泰,王娜,侯凌霄,许安廷. 小鼠内淋巴囊原代上皮细胞L型钙离子通道定位表达[J]. 山东大学学报 (医学版), 2021, 59(10): 17-22. |
[15] | 甄秋来,吕欣然,叶辉,丁绪超,柴小雪,胡辛,周明,曹莉莉. 基于TCGA数据库预测结肠癌预后基因及其临床应用价值[J]. 山东大学学报 (医学版), 2021, 59(1): 64-71. |
|