山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (6): 53-59.doi: 10.6040/j.issn.1671-7554.0.2020.112
• • 上一篇
郭田1*,付依林1*,高聆1,宋勇峰1,付国斌2,耿冲3,王潍博2
GUO Tian1*, FU Yilin1*, GAO Ling1, SONG Yongfeng1, FU Guobin2, GENG Chong3, WANG Weibo2
摘要: 目的 探讨女性乳腺癌临床特征与甲状腺激素水平的关系。 方法 收集142例女性乳腺癌患者的临床资料,包括基本特征、肿瘤特征、甲状腺功能等,将患者按照年龄、月经状态、肿瘤大小、转移程度、TNM分期、病理分级、雌激素受体、糖尿病患病情况、手术和化疗情况、肿瘤标志物水平分组,对患者甲状腺激素水平在不同临床特征分组间的差异进行统计学分析。 结果 (1)游离三碘甲状腺原氨酸(FT3)水平在无转移组、局部淋巴结转移组及远处转移组间差异有统计学意义(F=11.565,P<0.001),其中远处转移组高于无转移组[(5.10±0.51)vs(4.67±0.45)pmol/L, P<0.001]和局部淋巴结转移组[(5.10±0.51)vs(4.58±0.49)pmol/L,P<0.001];游离甲状腺素(FT4)水平在无转移组、局部淋巴结转移组及远处转移组间差异有统计学意义(F=5.730,P<0.05),其中无转移组高于局部淋巴结转移组[(16.77±2.59)vs (15.26±2.15)pmol/L, P=0.001]和远处转移组[(16.77±2.59)vs(15.75±2.08)pmol/L, P=0.053]。以年龄、月经状态、雌激素受体、糖尿病患病、手术与化疗情况等作为协变量,分析142例女性乳腺癌患者转移程度与甲状腺激素水平的关系,发现FT3水平在无转移组、局部淋巴结转移组及远处转移组间差异有统计学意义(F=6.810,P<0.05),其中远处转移组FT3水平高于局部淋巴结转移组[(5.10±0.12)vs(4.58±0.07)pmol/L, P<0.001]和无转移组[(5.10±0.12)vs(4.67±0.06)pmol/L, P<0.001],局部淋巴结转移组FT3水平低于无转移组[(4.58±0.07) vs(4.67±0.06)pmol/L, P<0.001];FT4水平在无转移组、局部淋巴结转移组及远处转移组差异有统计学意义(F=3.855, P<0.05),其中局部淋巴结转移组FT4水平低于无转移组[(15.25±0.37)vs(16.52±0.32)pmol/L, P<0.001]和远处转移组[(15.25±0.37) vs(16.34±0.60)pmol/L,P<0.001];(2)已手术治疗患者FT3水平高于未手术患者[(4.86±0.59)vs(4.66±0.44)pmol/L, t=2.354,P<0.05];(3)已化疗患者FT3水平高于未化疗患者[(4.95±0.50)vs(4.62±0.48)pmol/L, t=3.862,P<0.001];已接受化疗患者其FT4水平低于未化疗患者[(15.38±2.02)vs(16.49±2.57)pmol/L, t=-2.593, P<0.05]。 结论 甲状腺激素与乳腺癌的转移有关,手术与化疗均可能影响甲状腺激素水平。
中图分类号:
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. [2] Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014[J]. Chin J Cancer Res, 2018, 30(1):1-12. [3] Li H, Zheng RS, Zhang SW, et al. Incidence and mortality of female breast cancer in China, 2014[J]. Chin J Oncol, 2018, 40(3):166-171. [4] Liu S, Yang L, Yuan Y, et al. Cancer incidence in Beijing, 2014[J]. Chin J Cancer Res, 2018, 30(1):13-20. [5] Chen WQ, Li H, Sun KX, et al. Report of cancer incidence and mortality in China, 2014[J]. Chin J Oncol, 2018, 40(1):5-13. [6] Kress E, Samarut J. Thyroid hormones and the control of cell proliferation or cell differentiation: paradox or duality?[J]. Mol Cell Endocrinol, 2009, 313(1-2):36-49. [7] Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: Suggestions form a new method of treatment, with illustrative cases[J]. Lacent, 1896, 2:104 -110. [8] Angelousi A, Diamanti-Kandarakis E, Zapanti E, et al. Is there an association between thyroid function abnormalities and breast cancer?[J]. Arch Endocrinol Metab, 2017, 61(1):54-61. [9] Shi XZ, Jin X, Xu P, et al. Relationship between breast cancer and levels of serum thyroid hormones and antibodies: a meta-analysis[J]. Asian Pac J Cancer Prev, 2014, 15(16):6643-6647. [10] Wu CC, Yu YY, Yang HC, et al. Levothyroxine use and the risk of breast cancer: a nation-wide population-based case-control study[J]. Arch Gynecol Obstet, 2018, 298(2):389-396. [11] Journy NMY, Bernier MO, Doody MM, et al. Hyperthyroidism, Hypothyroidism, and cause-specific mortality in a large cohort of women[J]. Thyroid, 2017, 27(8):1001-1010. [12] Khan SR, Chaker L, Ruiter R, et al. Thyroid function and cancer risk: The rotterdam study[J]. J Clin Endocrinol Metab, 2016, 101(12):5030-5036. [13] Brandt J, Borgquist S. Prospectively measured thyroid hormones and thyroid peroxidase antibodies in relation to risk of different breast cancer subgroups: a Malmö Diet and Cancer Study[J]. Cancer Causes Control, 2015, 26(8):1093-1104. [14] Uyeturk U, Tatli AM, Gucuk S, et al. Risk factors for stage IV breast cancer at the time of presentation in Turkey[J]. Asian Pac J Cancer Prev, 2013, 14(12):7445-7449. [15] Moeller LC, Führer D. Thyroid hormone, thyroid hormone receptors, and cancer: a clinical perspective[J]. Endocr Relat Cancer, 2013, 20(2):19-29. [16] Martínez-Iglesias O, García-Silva S, Regadera J. Hypothyroidism enhances tumor invasiveness and metastasis development[J]. PLoS One,2009,4(7):6428. [17] 吴万敏, 张艳. 乳腺癌中THRβ1表达与甲状腺激素改变的临床研究[J]. 临床和实验医学杂志, 2014, 14(18):1513-1517. WU Wanmin, ZHANG Yan. Clinical study of the changes in expression of THRβ1 and thyroid hormone level in breast cancer [J]. Journal of Clinical and Experimental Medicine, 2014, 14(18):1513-1517. [18] Glushakov RI, Proshin SN, Tapil’skaya NI. The incidence of breast tumor during experimental hyperthyroidism[J]. Bull Exp Biol Med, 2013, 156(2):245-247. [19] Uzair ID, Conte Grand J, Flamini MI. Molecular actions of thyroid hormone on breast cancer cell migration and invasion via cortactin/N-WASP[J]. Front Endocrinol, 2019, 10:139. doi: 10.3389/fendo.2019.00139. [20] Flamini MI, Uzair ID, Pennacchio GE, et al. Thyroid hormone controls breast cancer cell movement via integrin αV/β3/SRC/FAK/PI3-kinases[J]. Horm Cancer, 2017, 8(1):16-27. [21] Tosovic A, Bondeson AG, Bondeson L, et al. T3 levels in relation to prognostic factors in breast cancer: a population-based prospective cohort study[J]. BMC cancer, 2014, 14:536. doi: 10.1186/1471-2407-14-536. [22] Weingarten C, Jenudi Y, Tshuva RY, et al. The interplay between epithelial-mesenchymal transition(EMT)and the thyroid hormones-αvβ3 axis in ovarian cancer[J]. Horm Cancer, 2018, 9(1):22-32. [23] Cohen K, Flint N, Shalev S, et al. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells[J]. Oncotarget, 2014, 5(15):6312-6322. [24] Majkowska-Mynarczyk A, Kinalski M. The thyroid gland function assessment in women after mastectomy and chemotherapy during breast cancer therapy[J]. Endokrynol Pol, 2007, 58(5):397-402. [25] 黄剑波, 金梁斌, 孔令泉,等. 乳腺癌患者治疗期间甲状腺功能的变化研究[J]. 重庆医科大学学报, 2014, 39(1):57-60. HUANG Jianbo, JIN Liangbin, KONG Lingquan, et al. Changes of thyroid functions among patients with breast cancer during therapy [J]. Journal of Chongqing Medical University, 2014, 39(1):57-60. [26] 余欢, 李小平. 化疗对妇科恶性肿瘤患者甲状腺功能影响研究进展[J]. 中国妇产科临床杂志,2018, 19(6):560-563. [27] Zhang L, Zhang F, Li Y, et al. Triiodothyronine promotes cell proliferation of breast cancer via modulating miR-204/amphiregulin[J]. Pathol Oncol Res, 2019, 25(2):653-658. [28] Sar P, Peter R, Rath B, et al. 3, 3'5 Triiodo L thyronine induces apoptosis in human breast cancer MCF-7 cells, repressing SMP30 expression through negative thyroid response elements[J]. PLoS One, 2011, 6(6):20861. [29] Barrera-Hernandez G, Park KS, Dace A, et al. Thyroid hormone-induced cell proliferation in GC cells is mediated by changes in G1 cyclin/cyclin-dependent kinase levels and activity[J]. Endocrinology, 1999, 140(11):5267-5274. [30] Suhane S. Thyroid hormone differentially modulates Warburg phenotype in breast cancer cells[J]. BiochemBiophys Res Commun, 2011, 414(1):73-78. [31] Huang J, Jin L, Ji G, et al. Implication from thyroid function decreasing during chemotherapy in breast cancer patients: chemosensitization role of triiodothyronine[J]. BMC Cancer, 2013, 13:334. doi: 10.1186/1471-2407-13-334. |
[1] | 阮祥燕,程姣姣,杜娟,谷牧青. 卵巢组织冷冻保存[J]. 山东大学学报 (医学版), 2022, 60(9): 24-30. |
[2] | 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46. |
[3] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[4] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[5] | 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5. |
[6] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
[7] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[8] | 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29. |
[9] | 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82. |
[10] | 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139. |
[11] | 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118. |
[12] | 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9. |
[13] | 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84. |
[14] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
[15] | 柴佳威,朱坤兵,张华伟,崔凤云,王甜甜,田兴松. 1例肝细胞肝癌甲状腺转移罕见病例报道与文献回顾[J]. 山东大学学报 (医学版), 2021, 59(3): 120-124. |
|