您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (2): 26-31.doi: 10.6040/j.issn.1671-7554.0.2016.1451

• 放射性粒子植入治疗肿瘤专题 • 上一篇    下一篇

模板联合肋骨钻孔技术辅助放射性粒子植入治疗肺癌的可行性

霍彬1,王磊1,王海涛1,霍小东1,曹强1,王丽丽1,臧立1,王金焕1,郑广钧2, 柴树德2   

  1. 天津医科大学第二医院 1.肿瘤科;2.胸外科, 天津 300211
  • 收稿日期:2016-11-23 出版日期:2017-02-10 发布日期:2017-02-10
  • 通讯作者: 柴树德. E-mail:chaishude@126.com E-mail:chaishude@126.com
  • 基金资助:
    国家自然科学基金(8157102300)

Feasibility of radioactive seed implantation in the treatment of lung cancer assisted by template combined with rib drilling technique

HUO Bin1, WANG Lei1, WANG Haitao1, HUO Xiaodong1, CAO Qiang1, WANG Lili1, ZANG Li1, WANG Jinhuan1, ZHENG Guanjun2, CHAI Shude2   

  1. 1. Department of Oncology;
    2. Department of Thoracic Surgery, Second Hospital of Tianjin Medical University, Tianjin 300211, China
  • Received:2016-11-23 Online:2017-02-10 Published:2017-02-10

摘要: 目的 评价模板联合肋骨钻孔技术辅助CT引导下放射性粒子植入在肺癌中应用的可行性。 方法 选择2015年1月至2016年6月在天津医科大学第二医院接受放射性粒子植入治疗的肺癌患者21例。植入前行胸部CT扫描获得医学数据成像信息(DICOM),导入近距离治疗计划系统(BTPS)进行预计划,处方剂量120 Gy。除常规针道设计外,对于因肋骨遮挡产生剂量冷区的靶区层面模拟经肋骨预置针道,术中采用肋骨钻孔技术建立真实进针通道,同时应用模板控制针的插植和粒子的植入,CT扫描验证插植针及粒子空间位置分布,术后即刻进行剂量验证。验证结果与术前计划的剂量参数进行配对t检验。粒子植入过程中和植入后观察并记录并发症。 结果 21例肺癌患者应用模板联合肋骨钻孔技术,均顺利完成放射性粒子植入。术后剂量验证靶区的体积、粒子数、针数、D90、V100及V200的平均值分别为47.6 cc、33颗、10支、12 765.1 Gy、92.6%、34.8%,术前计划分别为46.4 cc、33颗、10支、12 433.8 Gy、95.2%、28.8%(P=0.012、0.930、0.267、0.179、0.032、0.003)。术后质量验证满意率为90.5%(19/21)。气胸发生率19%(4/21),肺内出血9.5%(2/21),胸膜腔内积血4.7%(1/21),痰中带血19%(4/21),无大咯血。粒子移位发生率9.5%(2/21)。未观察到其他严重并发症。 结论 应用模板联合肋骨钻孔技术辅助CT引导下肺癌放射性粒子植入,方法安全可行,插植针定位、定向精准,可较好地在术中实现术前BTPS计划目标,避免徒手操作的盲目性和剂量不精准问题,对肺癌放射性粒子治疗的规范化和质量控制具有重要价值。

关键词: 肺肿瘤, 近距离治疗计划系统, 放射性粒子, 肋骨钻孔技术, 模板

Abstract: Objective To assess the feasibility of using radioactive seeds implantation assisted by template combined with rib drilling technique under CT guidance in the treatment of lung cancer. Methods The study involved 21 patients with lung cancer who underwent radioactive seeds implantation in our hospital during Jan. 2015 and Jun. 2016. Dicom data were acquired by chest CT scan before implantation, brachytherapy radiation treatment planning system(BTPS)was introduced to carry out the plan, and the prescription dose was 120 Gy. In addition to the conventional needle design, the special design of penetrating rib was adopted in the dose cooling zone due to rib occlusion, rib drilling tech- 山 东 大 学 学 报 (医 学 版)55卷2期 -霍彬,等.模板联合肋骨钻孔技术辅助放射性粒子植入治疗肺癌的可行性 \=-nique was used to establish the real channel, and template was used to control implantation. The distribution of implanted needles and seeds were observed with CT scan. Dose verification was performed immediately after the operation. Intraoperative and postoperative complications were observed and recorded. Results All patients tolerated brachytherapy well. The mean gross tumor volume(GTV), seed number, needle number, D90, V100 and V200 in postoperative verification and preplan were 47.6 vs 46.4 cc, 33 vs 33, 10 vs 10, 12 765.1 vs 12 433.8 Gy, 92.6% vs 95.2% and 34.8% vs 28.8%, respectively(P=0.012, 0.930, 0.267, 0.179, 0.032, and 0.003). The satisfaction rate was 90.5% after operation. The incidence of pneumothorax, pulmonary hemorrhage, pleural cavity, bloody sputum and particle displacement were 19%, 9.5%, 4.7%, 19% and 9.5%. No massive hemoptysis or other complications occurred. Conclusion Template combined with rib drilling technique in radioactive seeds implantation is safe and feasible. The precise positioning can significantly improve the preoperative plan conformity and avoid the blindness of manual operation. It has important value for the standardization and quality control in the treatment of lung cancer.

Key words: Template, Rib drilling technique, Brachytherapy treatment planning system, Lung cancer, Radioactive seeds

中图分类号: 

  • R734.2
[1] Trombetta MG, Colonias A, Makishi D, et al. Tolerance of the aorta using intraoperative iodine-125 interstitial brachytherapy in cancer of the lung[J]. Brachytherapy, 2008, 7(1): 50-54.
[2] Stewart A, Parashar B, Patel M. American brachytherapy society consensus guidelines for thoracic brachytherapy for lung cancer[J]. Brachytherapy, 2016, 15(1): 1-11.
[3] Wang J, Jiang Y, Li J, et al. Intraoperative ultrasound-guided iodine-125 seed implantation for unresectable pancreatic carcinoma[J]. J Exp Clin Cancer Res, 2009, 28: 88. doi: 10.1186/1756-9966-28-88.
[4] Older RA, Synder B, Krupski TL, et al. Radioactive implant migration inpatients treated for localized prostate cancer with interstitial brachytherapy[J]. J Urol, 2001, 165(5): 1590-1592.
[5] Lee W, Daly BD, DiPetrillo TA, et al. Limited resection for non-small cell lung cancer: observed local control with implantation of I-125 brachytherapy seeds[J]. Ann Thorac Surg, 2003, 75(1): 237-243.
[6] Tselis N, Chatzikonstantinou G, Kolotas C, et al. Computed tomography-guided interstitial high dose rate brachytherapy for centrally located liver tumours: a single institution study[J]. Eur Radiol, 2013, 23(8): 2264-2270.
[7] Nag S, Bice WS, Degaert K, et al. The American Brachytherapy Society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis[J]. Int J Radiat Oncol Biol Phys, 2000, 46: 221-230.
[8] Davis BJ, Horwitz EM, Lee WR, et al. American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy[J]. Brachytherapy, 2012, 11(1): 6-19.
[9] Gewanter RM, Wuu C, Laguna JL, et al. Intraoperative preplanning for transperineal ultrasound-guided permanent prostate brachytherapy[J]. Int J Radiat Oncol Biol Phys, 2000, 48(2): 377-380.
[10] Lee EK, Zaider M. Intraoperative dynamic dose optimization in permanent prostate implants[J]. Int J Radiat Oncol Biol Phys, 2003, 56(3): 854-861.
[11] 申文江. 放射性粒子植入的现状与进展[J]. 中国微创外科杂志, 2007, 7(2): 118-119.
[12] Martínez-Monge R, Garrán C, Vivas I, et al. Percutaneous CT-guided 103Pd implantation for the medically inoperable patient with T1N0M0 non-small cell lung cancer: a case report[J]. Brachytherapy, 2004, 3(3): 179-181.
[13] Martínez-Monge R, Pagola M, Vivas I, et al. CT-guided permanent brachytherapy for patients with medically inoperable early-stage non-small cell lung cancer(NSCLC)[J]. Lung Cancer, 2008, 61(2): 209-213.
[14] Ricke J, Wust P, Wieners G, et al. CT-guided interstitial single-fraction brachytherapy of lung tumors: phase I results of a novel technique[J]. Chest, 2005, 127(6): 2237-2242.
[15] 柴树德, 郑广钧, 毛玉权, 等. CT引导下经皮穿刺种植放射性125I粒子治疗晚期肺癌[J]. 中华放射肿瘤学杂志, 2004, 13(4): 291-293. CHAI Shude, ZHENG Guangjun, MAO Yuquan, et al. CT guided transcutaneous interstitial implantation of 125I seeds for lung carcinoma[J]. Chinese Journal of Radiation Oncology, 2004, 13(4): 291-293.
[16] Yang R, Wang J, Zhang H. Dosimetric study of Cs-131, I-125, and Pd-103 seeds for permanent prostate brachytherapy[J]. Cancer Biother Radiopharm, 2009, 24(24): 701-705.
[17] 王俊杰. 影像引导组织间介入近距离治疗肿瘤概念的提出与实践[J]. 中华放射医学与防护杂志, 2014, 34(11): 801-802.
[18] 王俊杰. 中国大陆地区影像引导介入近距离治疗学发展概述[J]. 中华放射肿瘤学杂志, 2016, 25(4): 301-303.
[19] Sheu R, Powers A, Mcgee H, et al. SU-F-T-44: a comparison of the pre-plan, intra-operative plan, and post-implant dosimetry for a prostate implant case using prefabricated linear polymer-encapsulated Pd-103[J]. Med Phy, 2016, 43(6): 3471-3471.
[20] Mullokandov E, Gejerman G. Analysis of serial CT scans to assess template and catheter movement in prostate HDR brachytherapy[J]. Int J Radiat Oncol Biol Phys, 2004, 58(4): 1063-1071.
[21] Agrawal PP, Singhal SS, Neema JP, et al. The role of interstitial brachytherapy using template in locally advanced gynecological malignancies[J]. Gynecol Oncol, 2005, 99(1): 169-175.
[22] 王俊杰, 张福君, 张建国, 等. 肿瘤放射性粒子治疗规范[M].北京: 人民卫生出版社, 2016: 67-75.
[23] 霍彬, 侯朝华, 叶剑飞, 等. CT引导术中实时计划对胸部肿瘤125I粒子植入治疗的价值[J]. 中华放射肿瘤学杂志, 2013, 22(5): 400-403. HUO Bin, HOU Zhaohua, YE Jianfei, et al. The study of intraoperative real-time planning by CT-guided in 125I seed implantation for thoracic malignance[J]. Chinese Journal of Radiation Oncology, 2013, 22(5): 400-403.
[24] Hinnen KA, Moerland MA, Battermann J, et al. Loose seeds versus stranded seeds in I-125 prostate brachytherapy: differences in clinical outcome[J]. Radiother Oncol, 2010, 96(1): 30-33.
[25] 石峰, 柴文文, 曾理, 等. 125I辐照的聚醚醚酮粒子链的生物安全性[J]. 中国组织工程研究, 2016, 20(38): 5716-5721.
[26] 霍小东, 杨景魁, 闫卫亮, 等. CT引导下125I粒子植入治疗肺癌术后气胸发生率的相关因素分析[J]. 中华放射医学与防护杂志, 2014, 34(12): 912-915. HUO Xiaodong, YANG Jingkui, YAN Weiliang, et al. The factor analysis of the incidence of pneumothorax after CT-guided 125I radioactive seed implantation for lung cancer[J]. Chinese Journal of Radiological Medicine and Protection, 2014, 34(12): 912-915.
[27] 柴树德,郑广钧.胸部肿瘤放射性粒子治疗学[M].北京:人民卫生出版社,2012:196-197.
[1] 刘树伟,娄云霞,汤煜春. 4D数字脑图谱的构建、不对称性及遗传倾向[J]. 山东大学学报 (医学版), 2020, 1(8): 28-33.
[2] 黄竹青,吴雪韦,任冬梅. 槲寄生中酚类化学成分的分离鉴定及其对A549细胞的增殖抑制活性[J]. 山东大学学报(医学版), 2017, 55(8): 35-41.
[3] 曾奕明,林燕萍. 放射性125I粒子植入局部治疗支气管肺癌[J]. 山东大学学报(医学版), 2017, 55(4): 1-6.
[4] 柴树德. 我国放射性粒子植入治疗支气管肺癌现状与技术创新[J]. 山东大学学报(医学版), 2017, 55(2): 4-7.
[5] 王娟,张宏涛,高贞,底学敏,王泽阳. 腹部肿瘤放射性粒子植入并发症处理及预防[J]. 山东大学学报(医学版), 2017, 55(2): 8-13.
[6] 韩明勇,霍彬,张颖,林琦,戴建建,徐瑞彩,杨琦,耿宝成,郑广钧,王海涛,霍小东,陈宝明(柴树德,王俊杰审阅). CT联合模板引导放射性粒子植入治疗肺癌技术流程[J]. 山东大学学报(医学版), 2017, 55(2): 14-20.
[7] 张颖,林琦,袁苑,戴建建,耿宝成,徐瑞彩,刘亚坤,韩明勇. 3D打印个体化模板联合CT引导125I粒子植入治疗肿瘤术前术后剂量学比较[J]. 山东大学学报(医学版), 2017, 55(2): 45-49.
[8] 申文江. 放射性粒子植入的创新性临床研究[J]. 山东大学学报(医学版), 2017, 55(2): 1-3.
[9] 张颖,林琦,袁苑,戴建建,耿宝成,徐瑞彩,刘亚坤,韩明勇. 3D打印个体化模板联合CT引导125I粒子植入治疗胸壁转移瘤1例[J]. 山东大学学报(医学版), 2016, 54(4): 94-96.
[10] 张颖,林琦,袁苑,戴建建,耿宝成,徐瑞彩,刘亚坤,韩明勇. 3D打印个体化模板联合CT引导125I粒子植入治疗恶性肿瘤质量评价[J]. 山东大学学报(医学版), 2016, 54(11): 44-50.
[11] 李星宇, 梁婧, 李岩. 血管内皮抑素协同肿瘤特异性DC-T细胞的抗肿瘤效应[J]. 山东大学学报(医学版), 2015, 53(7): 19-23.
[12] 贾颖,祖珊珊,郏雁飞,肖东杰,汪运山,马晓丽. CHRNA5基因表达下调对肺癌细胞VEGF表达的影响[J]. 山东大学学报(医学版), 2014, 52(2): 12-15.
[13] 孙越,刘香岚,王群,郭春,石永玉,张利宁. 人TIPE家族新成员TIPE3特异性抗体的鉴定及应用[J]. 山东大学学报(医学版), 2014, 52(1): 5-9.
[14] 祖珊珊1,马晓丽1,2,郏雁飞1,2,赵云3,贾颖1,肖东杰1,2,汪运山1,2. α5-烟碱型乙酰胆碱受体表达下调对肺癌细胞HIF-1α表达的影响[J]. 山东大学学报(医学版), 2013, 51(9): 8-12.
[15] 张林1,张振江2,孟龙1,马伟1,杜贾军1. 恶性局灶性磨玻璃样肺结节的外科治疗[J]. 山东大学学报(医学版), 2013, 51(9): 84-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!