您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (12): 1-6.doi: 10.6040/j.issn.1671-7554.0.2014.991

• 基础医学 •    下一篇

脑源性神经营养因子对小鼠结肠平滑肌细胞的作用及其机制

曹静, 陈飞雪, 王腾飞, 赵宏宇, 赵栋燕, 左秀丽, 李延青   

  1. 山东大学齐鲁医院消化内科, 山东济南 250012
  • 收稿日期:2014-12-24 出版日期:2015-12-10 发布日期:2015-12-10
  • 通讯作者: 左秀丽。E-mail:xiulizuo@gmail.com E-mail:xiulizuo@gmail.com
  • 基金资助:
    国家自然科学基金(81170352)

Effects of brain-derived neurotrophic factor on colon smooth muscle cells and the mechnism in mice

CAO Jing, CHEN Feixue, WANG Tengfei, ZHAO Hongyu, ZHAO Dongyan, ZUO Xiuli, LI Yanqing   

  1. Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Received:2014-12-24 Online:2015-12-10 Published:2015-12-10

摘要: 目的 探讨脑源性神经营养因子(BDNF)对小鼠结肠平滑肌细胞(SMC)钙离子浓度及α-平滑肌激动蛋白(α-SMA)的影响及其相关调节机制。方法 Western blotting法检测BDNF基因敲除(BDNF+/-)小鼠与正常野生型(BDNF+/+)小鼠α-SMA表达水平的差异。培养原代小鼠结肠SMC,免疫荧光法检测SMC中酪氨酸激酶B(TrkB)受体的表达。同时以BDNF、TrkB受体阻滞剂(K252a)干预SMC,Western blotting法检测α-SMA和TrkB-PLC-Ca2+信号通路蛋白表达水平的变化,钙离子成像法检测SMC内钙离子浓度的变化。结果 与BDNF+/+小鼠相比,BDNF+/-小鼠结肠α-SMA表达水平明显降低。SMC表达TrkB受体,在BDNF作用下,SMC中α-SMA、TrkB-PLC-Ca2+信号通路蛋白表达量和细胞内钙离子浓度增加,且加入K252a可阻断以上变化。结论 BDNF可能通过TrkB-PLC-Ca2+信号通路作用于SMC,影响细胞内钙离子浓度及α-SMA的表达水平,进而影响肠道动力。

关键词: 脑源性神经营养因子, 平滑肌细胞, TrkB-PLC-Ca2+信号通路, 肠道动力

Abstract: Objective To investigate the effects of brain-derived neurotrophic factor (BDNF) on the intracellular Ca2+ concentration ([Ca2+]i) alterations and smooth muscle α-actin (α-SMA) expression of smooth muscle cells (SMCs) in mice. Methods The α-SMA expression of colonic SMCs in the BDNF+/- mice was measured by Western blotting, and was compared with that in BDNF+/+ mice. The expression of tropomyosin-related kinase B (TrkB) receptor was identified in the primary colonic SMCs of the mice by immunofluorescence staining. After administration of BDNF and TrkB receptor antagonists (K252a), the expressions of α-SMA and TrkB-PLC-Ca2+ pathway were measured by Western blotting. The alteration of[Ca2+]i was measured by[Ca2+]i imaging. Results The expression of α-SMA was obviously decreased in BDNF+/- mice compared with that in BDNF+/+ mice. The TrkB receptor was identified in the SMCs. After administration of BDNF, the expressions of α-SMA, TrkB-PLC-Ca2+ signal pathway and[Ca2+]i increased. K252a could reverse those changes. Conclusion BDNF might induce the alterations of[Ca2+]i and α-SMA expression of SMC by TrkB-PLC-Ca2+ signal pathway, which might be the mechanism to affect the gut motility.

Key words: TrkB-PLC-Ca2+ signal pathway, Gut motility, Brain-derived neurotrophic factor, Smooth muscle cells

中图分类号: 

  • R574
[1] Patapoutian A, Reichardt LF. Trk receptors:mediators of neurotrophin action[J]. Curr Opin Neurobiol, 2001, 11(3):272-280.
[2] Gottmann K, Mittmann T, Lessmann V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses[J]. Exp Brain Res, 2009, 199(3-4):203-234.
[3] Skaper SD. The neurotrophin family of neurotrophic factors:an overview[J]. Methods Mol Biol, 2012, 846:1-12.
[4] Grider JR, Piland BE, Gulick MA, et al. Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release[J]. Gastroenterology, 2006, 130(3):771-780.
[5] Chen FX, Yu YB, Yuan XM, et al. Brain derived neurotrophic factor enhances the contraction of intestinal muscle strips induced by SP and cGRP in mice[J]. Regul Pept, 2012, 178(1-3):86-94.
[6] Coulie B, Szarka LA, Lawrence A, et al. Recombinant human neurotrophic factors accelerate colonic transit and relieve constipation in humans[J]. Gastroenterology, 2000, 119(1):41-50.
[7] Wellmer A, Misra VP, Sharief MK, et al. A double-blind placebo-controlled clinical trial of recombinant human brain-derived neurotrophic factor (rhBDNF) in diabetic polyneuropathy[J]. J Peripher Nerv Syst, 2001, 6(4):204-210.
[8] Takaki M, Nakayama S, Misawa H, et al. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells[J]. Stem Cells, 2006, 24(6):1414-1422.
[9] Boesmans W, Gomes P, Janssens J, et al. Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system[J]. Gut, 2008, 57(3):314-322.
[10] Al-Qudah M, Anderson CD, Mahavadi S, et al. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(4):G328-337.
[11] Chen FX, Yu YB, Wang P, et al. Brain-derived neurotrophic factor accelerates gut motility in slow-transit constipation[J]. Acta Physiol (Oxf), 2014, 212(3):226-238.
[12] 陈飞雪,于岩波,王鹏,等.脑源性神经营养因子对小鼠回肠及结肠平滑肌收缩活动的影响及其机制[J].山东大学学报:医学版, 2012,50(4):42-46. CHEN Feixue, YU Yanbo, WANG Peng, et al. Brain-derived neurotrophic factor influences contractile activity in the isolated ileum and colon of mice[J]. Journal of Shandong University:Health Sciences, 2012, 50(4):42-46.
[13] Zhou XF, Li WP, Zhou FH, et al. Differential effects of endogenous brain-derived neurotrophic factor on the survival of axotomized sensory neurons in dorsal root ganglia:a possible role for the p75 neurotrophin receptor[J]. Neuroscience, 2005, 132(3):591-603.
[14] Lommatzsch M, Braun A, Mannsfeldt A, et al. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia[J]. Am J Pathol, 1999, 155(4):1183-1192.
[15] Wedel T, Van Eys GJ, Waltregny D, et al. Novel smooth muscle markers reveal abnormalities of the intestinal musculature in severe colorectal motility disorders[J]. Neurogastroenterol Motil, 2006, 18(7):526-538.
[16] Ruuska TH, Karikoski R, Smith VV, et al. Acquired myopathic intestinal pseudo-obstruction may be due to autoimmune enteric leiomyositis[J]. Gastroenterology, 2002, 122(4):1113-1139.
[17] Imai DM, Miller JL, Leonard BC, et al. Visceral smooth muscle α-actin deficiency associated with chronic intestinal pseudo-obstruction in a Bengal cat (Felis catus x Prionailurus bengalensis)[J]. Vet Pathol, 2014, 51(3):612-618.
[18] Gamba E, Carr NJ, Bateman AC. Deficient alpha smooth muscle actin expression as a cause of intestinal pseudoobstruction:fact or fiction?[J]. J Clin Pathol, 2004, 57:1168-1171.
[19] Reichardt LF. Neurotrophin-regulated signalling pathways[J]. Philos Trans R Soc Lond B Biol Sci, 2006, 361(1473):1545-1564.
[20] Chao MV. Neurotrophins and their receptors:a convergence point for many signalling pathways[J]. Nat Rev Neurosci, 2003, 4(4):299-309.
[21] Prakash YS, Thompson MA, Pabelick CM. Brain-derived neurotrophic factor in TNF-alpha modulation of Ca2+ in human airway smooth muscle[J]. Am J Respir Cell Mol Biol, 2009, 41(5):603-611.
[1] 张文雪,徐丽东,张明明,郭传国,左秀丽. NR2B通过mBDNF参与肠易激综合征内脏高敏感的发生[J]. 山东大学学报(医学版), 2017, 55(7): 17-22.
[2] 陈磊,刘东晓,李开鸣,宋新强,曾宪思,蒋丽杰. 有序胶原材料联合CBD-BDNF对大鼠脊髓损伤的修复作用[J]. 山东大学学报(医学版), 2017, 55(5): 43-48.
[3] 王晓琳,周元丽,孙伟,李莉. p38 MAPK信号通路调控人主动脉平滑肌细胞Ⅰ型和Ⅲ型胶原的表达[J]. 山东大学学报(医学版), 2016, 54(8): 12-16.
[4] 赵栋燕,于岩波,左秀丽. 脑源性神经营养因子在小鼠肠黏膜屏障中的作用[J]. 山东大学学报(医学版), 2016, 54(7): 1-5.
[5] 魏秀娟,吴修胤, 佟冬冬,李静,杨晓露,张风河. BDNF/TrkB在舌鳞状细胞癌中的表达及BDNF对其增殖能力的影响[J]. 山东大学学报(医学版), 2016, 54(6): 50-54.
[6] 袁秀玉,董原君,梁霞,胡敏,张桂青. 创伤性应激对大鼠海马BDNF表达的影响[J]. 山东大学学报(医学版), 2016, 54(4): 37-41.
[7] 杨博,李平,孟立平,周昌钻,潘孙雷,池菊芳,郭航远. 依那普利抑制大鼠血管平滑肌细胞表型转化及可能的信号通路[J]. 山东大学学报(医学版), 2016, 54(2): 21-26.
[8] 赵宏宇,陈飞雪,曹静,戚庆庆,李月月,左秀丽,李延青. 脑组织海马区脑源性神经营养因子在焦虑调节内脏高敏感中的作用[J]. 山东大学学报(医学版), 2014, 52(3): 33-36.
[9] 张欣, 郭海鹏, 王振红, 唐琳娜, 杨洁, 吴大玮. 异钩藤碱抑制PDGF-BB诱导肺动脉平滑肌细胞增殖的实验研究[J]. 山东大学学报(医学版), 2014, 52(12): 35-40.
[10] 孟庆红1,赵翠芬1,孔清玉1,李福海1,李栋2,夏伟1. 尾加压素Ⅱ对大鼠肺动脉平滑肌细胞胶原合成的影响[J]. 山东大学学报(医学版), 2013, 51(5): 15-19.
[11] 陈乃耀1,申娜2,贺靖澜3,郑丽坤4. 人脐血间充质干细胞治疗鼠创伤性脑损伤后BDNF的变化[J]. 山东大学学报(医学版), 2013, 51(1): 22-.
[12] 臧元伟,高路,吴栋,张红媛,陈凯,付姗姗,刘璐,李景新. 组织块消化法原代培养大鼠输精管平滑肌细胞及鉴定[J]. 山东大学学报(医学版), 2012, 50(8): 51-56.
[13] 陈飞雪,于岩波,王鹏,左秀丽,李延青. 脑源性神经营养因子对小鼠回肠及结肠平滑肌收缩活动的影响及其机制[J]. 山东大学学报(医学版), 2012, 50(4): 42-46.
[14] 刘杨,苗宇船. 滋补脾阴方药对大鼠脊髓损伤后脑源性神经营养因子表达的影响[J]. 山东大学学报(医学版), 2012, 50(10): 33-36.
[15] 李群锋. 雌激素受体对血管平滑肌细胞早衰的影响[J]. 山东大学学报(医学版), 2011, 49(4): 13-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!