山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 36-45.doi: 10.6040/j.issn.1671-7554.0.2025.0344
• 临床医学 • 上一篇
刘振昆1,吕纪玲2,徐伟伟3,马力天4,5,6,张才擎1,2
LIU Zhenkun1, LYU Jiling2, XU Weiwei3, MA Litian4,5,6, ZHANG Caiqing1,2
摘要: 目的 探究支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)病原微生物靶向测序(targeted next generation sequencing, tNGS)技术与传统培养在非小细胞肺癌(non-small cell lung cancer, NSCLC)合并侵袭性肺真菌病(invasive pulmonary fungal disease, IPFD)中的诊断价值。 方法 回顾性分析2022年9月1日至2025年4月1日40例于山东省第二人民医院临床诊断为NSCLC合并IPFD患者的临床资料,收集BALF样本行tNGS检测与传统培养,对比分析病原检出率及诊断效能。 结果 40例IPFD患者样本中,tNGS和传统培养对真菌的阳性检出率分别为85.0%、52.5%(校正χ2 = 6.86,P=0.01),对细菌的阳性检出率分别为70.0%、50.0%(校正χ2=4.08,P=0.04)。tNGS和传统培养对细菌的检测灵敏度分别为95.5%、86.4%(校正χ2=0.25,P=0.62)。所有患者经抗真菌、细菌及抗肿瘤治疗后均好转出院。 结论 tNGS技术在NSCLC合并IPFD的病原检测中,对真菌和细菌的检测效能均显著优于BALF传统培养。临床上可将tNGS作为早期筛查工具,结合BALF培养、临床特征综合判读,以优化诊疗并避免过度治疗。
中图分类号:
| [1] Popat S, Mok T, Yang JC, et al. Afatinib in the treatment of EGFR mutation-positive NSCLC: a network meta-analysis[J]. Lung Cancer, 2014, 85(2): 230-238. [2] Zhang RM, Wu Y, Deng GC, et al. Value of sputum Gram stain, sputum culture, and bronchoalveolar lavage fluid Gram stain in predicting single bacterial pathogen among children with community-acquired pneumonia[J]. BMC Pulm Med, 2022, 22(1): 427. doi:10.1186/s12890-022-02234-1 [3] Collins ME, Popowitch EB, Miller MB. Evaluation of a novel multiplex PCR panel compared to quantitative bacterial culture for diagnosis of lower respiratory tract infections[J]. J Clin Microbiol, 2020, 58(5): e02013-19. doi:10.1128/JCM.02013-19 [4] Zhu N, Lin S, Weng X, et al. Performance of the colloidal gold immunochromatography of cryptococcal antigen on bronchoalveolar lavage fluid for the diagnosis of pulmonary cryptococcosis[J]. Can J Infect Dis Med Microbiol, 2022, 2022: 7876030. doi:10.1155/2022/7876030 [5] Wang D, Wang WL, Ding YJ, et al. Metagenomic next-generation sequencing successfully detects pulmonary infectious pathogens in children with hematologic malignancy[J]. Front Cell Infect Microbiol, 2022, 12: 899028. doi:10.3389/fcimb.2022.899028 [6] Ebinger A, Fischer S, Höper D. A theoretical and genera-lized approach for the assessment of the sample-specific limit of detection for clinical metagenomics[J]. Comput Struct Biotechnol J, 2020, 19: 732-742. doi:10.1016/j.csbj.2020.12.040 [7] Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530. [8] 世界华人医学真菌专业委员会. 侵袭性肺真菌病诊断路径专家共识(2024版)[J]. 中华检验医学杂志, 2025, 48(4): 459-468. World Society of Chinese Medical Mycology. Expert consensus on the diagnostic pathway for invasive pulmonary fungal disease(2024)[J]. Chinese Journal of Laboratory Medicine, 2025, 48(4): 459-468. [9] Meyer KC, Raghu G, Baughman RP, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease[J]. Am J Respir Crit Care Med, 2012, 185(9): 1004-1014. [10] 陶锋, 李一荣, 周艳梅, 等. 靶向宏基因组测序技术在不明原因肺部感染病原学诊断中的价值[J]. 中国病原生物学杂志, 2024, 19(11): 1290-1294. TAO Feng, LI Yirong, ZHOU Yanmei, et al. Targeted metagenomic sequencing in the diagnosis of pulmonary infection of unknown etiology [J]. Journal of Pathogen Biology, 2024, 19(11): 1290-1294. [11] 颜新生, 张丹, 王栋, 等. 疑似肺炎患者BALF样本应用tNGS技术进行病原学诊断的价值研究[J]. 现代检验医学杂志, 2023, 38(5): 12-16. YAN Xinsheng, ZHANG Dan, WANG Dong, et al. Value of tNGS in the etiological diagnosis of BALF samples from suspected pneumonia patients [J]. Journal of Modern Laboratory Medicine, 2023, 38(5): 12-16. [12] 母发光, 何海兰, 李晶. 儿童侵袭性肺部真菌感染危险因素分析[J].中国当代儿科杂志, 2014, 16(8): 779-782. MU Faguang, HE Hailan, LI Jing. Risk factors for invasive pulmonary fungal infection in children[J]. Chinese Journal of Contemporary Pediatrics, 2014, 16(8): 779-782. [13] Jaggi TK, Agarwal R, Tiew PY, et al. Fungal lung di-sease[J]. Eur Respir J, 2024, 64(5): 2400803. doi:10.1183/13993003.00803-2024 [14] Li Z, Lu G, Meng GX. Pathogenic fungal infection in the lung[J]. Front Immunol, 2019, 10: 1524. doi:10.3389/fimmu.2019.01524 [15] Ianiri G, Idnurm A. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization[J]. mBio, 2015, 6(2): e02334-14. doi:10.1128/mBio.02334-14 [16] Bassetti M, Garnacho-Montero J, Calandra T, et al. Intensive care medicine research agenda on invasive fungal infection in critically ill patients[J]. Intensive Care Med, 2017, 43(9): 1225-1238. [17] Bajaj JS, Reddy RK, Tandon P, et al. Prediction of fungal infection development and their impact on survival using the NACSELD cohort[J]. Am J Gastroenterol, 2018, 113(4): 556-563. [18] Salazar F, Bignell E, Brown GD, et al. Pathogenesis of respiratory viral and fungal coinfections[J]. Clin Microbiol Rev, 2022, 35(1): e0009421. doi:10.1128/CMR.00094-21 [19] Marr KA, Platt A, Tornheim JA, et al. Aspergillosis complicating severe coronavirus disease[J]. Emerg Infect Dis, 2021, 27(1): 18-25. [20] White PL, Dhillon R, Cordey A, et al. A national strategy to diagnose coronavirus disease 2019-associated invasive fungal disease in the intensive care unit[J]. Clin Infect Dis, 2021, 73(7): e1634-e1644. [21] Patel A, Agarwal R, Rudramurthy SM, et al. Multicenter epidemiologic study of coronavirus disease-associated mucormycosis, India[J]. Emerg Infect Dis, 2021, 27(9): 2349-2359. [22] Paavai TT, Vasanthi V, Rameshkumar A, et al. Maxillary mucormycotic osteonecrosis as a manifestation of post-COVID-19 infection in non-diabetic patients: report of two cases[J]. J Microsc Ultrastruct, 2023, 12(2): 99-103. [23] Barchiesi F, Orsetti E, Mazzanti S, et al. Candidemia in the elderly: what does it change?[J]. PLoS One, 2017, 12(5): e0176576. doi:10.1371/journal.pone.0176576 [24] Burguete SR, Maselli DJ, Fernandez JF, et al. Lung transplant infection[J]. Respirology, 2013, 18(1): 22-38. [25] Boch T, Spiess B, Cornely OA, et al. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1, 3-β-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: results of a prospective multicentre study[J]. Clin Microbiol Infect, 2016, 22(10): 862-868. [26] Linder KA, Kauffman CA, Zhou SW, et al. Performance of the(1, 3)-beta-D-glucan assay on bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis[J]. Mycopathologia, 2020, 185(5): 925-929. [27] 李晗婷, 韩小雨, 郑雨婷, 等. 肺部侵袭性曲霉菌和白色念珠菌感染的临床与CT表现比较[J]. 临床放射学杂志, 2024, 43(4): 543-548. LI Hanting, HAN Xiaoyu, ZHENG Yuting, et al. Comparison of clinical and CT findings of invasive aspergillus and Candida albicans infections in the lung [J]. Journal of Clinical Radiology, 2024, 43(4): 543-548. [28] 谷兴丽, 曹明芹, 徐思成, 等. 肺侵袭性真菌感染患者临床与影像学特征对真菌病原体的提示[J]. 中华急诊医学杂志, 2016, 25(7): 7. doi:10.3760/cma.j.issn.1671-0282.2016.07.016 GU Xingli, CAO Mingqin, XU Sicheng, et al. The predictive value of clinical and radiographic features in fungal pathogen identification in immunocompromised patients with pulmonary invasive fungal infection [J]. Chinese Journal of Emergency Medicine, 2016, 25(7): 7. doi:10.3760/cma.j.issn.1671-0282.2016.07.016 [29] Sevilha JB, Rodrigues RS, Barreto MM, et al. Infectious and non-infectious diseases causing the air crescent sign: a state-of-the-art review[J]. Lung, 2018, 196(1): 1-10. [30] Patterson TF, Thompson GR, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America[J]. Clin Infect Dis, 2016, 63(4): e1-e60. [31] Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review[J]. Eur Respir Rev, 2011, 20(121): 156-174. [32] Alsayed AR, Abed A, Khader HA, et al. Molecular accounting and profiling of human respiratory microbial communities: toward precision medicine by targeting the respiratory microbiome for disease diagnosis and treatment[J]. Int J Mol Sci, 2023, 24(4): 4086. doi:10.3390/ijms24044086 [33] Yagi K, Asai N, Huffnagle GB, et al. Early-life lung and gut microbiota development and respiratory syncytial virus infection[J]. Front Immunol, 2022, 13: 877771. doi:10.3389/fimmu.2022.877771 [34] Paglicci L, Borgo V, Lanzarone N, et al. Incidence and risk factors for respiratory tract bacterial colonization and infection in lung transplant recipients[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(6): 1271-1282. [35] Vientós-Plotts AI, Ericsson AC, Rindt H, et al. Blood cultures and blood microbiota analysis as surrogates for bronchoalveolar lavage fluid analysis in dogs with bacterial pneumonia[J]. BMC Vet Res, 2021, 17(1): 129. doi:10.1186/s12917-021-02841-w [36] Zhang XQ, Lei Y, Tan XL, et al. Optimization of early antimicrobial strategies for lung transplant recipients based on metagenomic next-generation sequencing[J]. Front Microbiol, 2022, 13: 839698. doi:10.3389/fmicb.2022.839698 [37] Deng ZF, Li CH, Wang YJ, et al. Targeted next-generation sequencing for pulmonary infection diagnosis in patients unsuitable for bronchoalveolar lavage[J]. Front Med, 2023, 10: 1321515. doi:10.3389/fmed.2023.1321515 [38] Poulsen SH, Søgaard KK, Fuursted K, et al. Evaluating the diagnostic accuracy and clinical utility of 16S and 18S rRNA gene targeted next-generation sequencing based on five years of clinical experience[J]. Infect Dis, 2023, 55(11): 767-775. [39] Kildow BJ, Ryan SP, Danilkowicz R, et al. Next-generation sequencing not superior to culture in periprosthetic joint infection diagnosis[J]. Bone Joint J, 2021, 103-B(1): 26-31. [40] Flurin L, Wolf MJ, Greenwood-Quaintance KE, et al. Targeted next generation sequencing for elbow periprosthetic joint infection diagnosis[J]. Diagn Microbiol Infect Dis, 2021, 101(2): 115448. doi:10.1016/j.diagmicrobio.2021.115448 [41] Uddin MKM, Cabibbe AM, Nasrin R, et al. Targeted next-generation sequencing of Mycobacterium tuberculosis from patient samples: lessons learned from high drug-resistant burden clinical settings in Bangladesh[J]. Emerg Microbes Infect, 2024, 13(1): 2392656. doi:10.1080/22221751.2024.2392656 [42] Bagratee TJ, Studholme DJ. Targeted genome sequencing for tuberculosis drug susceptibility testing in South Africa: a proposed diagnostic pipeline[J]. Access Microbiol, 2024, 6(2): 000740.v3. doi:10.1099/acmi.0.000740.v3 [43] Chen QY, Yi J, Liu YW, et al. Clinical diagnostic value of targeted next-generation sequencing for infectious diseases(Review)[J]. Mol Med Rep, 2024, 30(3): 153. doi:10.3892/mmr.2024.13277 [44] Murphy SG, Smith C, Lapierre P, et al. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing[J]. Front Public Health, 2023, 11: 1206056. doi:10.3389/fpubh.2023.1206056 [45] Zhang P, Liu BY, Zhang S, et al. Clinical application of targeted next-generation sequencing in severe pneumonia: a retrospective review[J]. Crit Care, 2024, 28(1): 225. doi:10.1186/s13054-024-05009-8 |
| [1] | 赵汉卿,周新睿,李子建,唐兴. 循环肿瘤细胞联合血清学检测在非小细胞肺癌中的应用[J]. 山东大学学报 (医学版), 2025, 63(5): 79-85. |
| [2] | 徐年兴,魏东,乔俊杰,战炳炎. CD8+、IL-6和PaO2对不可切除ⅢB/C和Ⅳ期非小细胞肺癌免疫治疗触发放射召回性肺炎的预测价值[J]. 山东大学学报 (医学版), 2025, 63(2): 29-35. |
| [3] | 张荣雨,赵文,李洪欣,杨闯,王健,韩春燕,李际盛. 奥西替尼联合化疗一线治疗EGFR-RAD51融合突变转移性肺腺癌1例[J]. 山东大学学报 (医学版), 2024, 62(5): 116-120. |
| [4] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
| [5] | 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37. |
| [6] | 马瑞杰,朱良明,左太阳,李春海,张楠,孙志钢. 微波消融治疗非小细胞肺癌根治术后肺寡转移瘤的预后分析[J]. 山东大学学报 (医学版), 2022, 60(12): 63-68. |
| [7] | 张阿敏,李国盛,李福海. 儿童支原体大叶性肺炎肺泡灌洗液细胞因子与局部炎症的相关性[J]. 山东大学学报 (医学版), 2022, 60(11): 82-88. |
| [8] | 刘会宁,彭军,任迎春,杨光,王文豪,刘金锋,田勍. 34例胸腔镜下肺楔形切除与21例肺段切除对位于肺段P区的ⅠA1期非小细胞肺癌治疗比较[J]. 山东大学学报 (医学版), 2022, 60(11): 38-43. |
| [9] | 丁子琛,王浩桦,周立雯,丛慧文,李承圣,包绮晗,杨毅,王廉源,王素珍,石福艳. 基于贝叶斯累加回归树模型的非小细胞肺癌患者个性化疗效研究[J]. 山东大学学报 (医学版), 2022, 60(10): 92-98. |
| [10] | 刘小璟,夏西燕,肖珂,陈文丹,庄学伟. 外泌体lncRNA OGFRP1在84例非小细胞肺癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2020, 58(11): 71-75. |
| [11] | 魏萍,杜鲁涛,王卿,展垚,谢玉姣,张淑君,段伟丽,王传新. 血清外泌体miR-20b-5p对非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(4): 91-96. |
| [12] | 王伟,刘拥征,李岭. 酸浆苦素B对人非小细胞肺癌细胞增殖、迁移及凋亡的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 13-18. |
| [13] | 王建丽,王筱静,孙玉莲,胡晓乐,栾晓嵘. 吉非替尼联合化疗治疗50例晚期非小细胞肺癌患者的疗效[J]. 山东大学学报 (医学版), 2019, 57(11): 20-26. |
| [14] | 郑清月,赵秋红,渠香云,董肇楠,马雪情,贾云莉. 血清外泌体miR-205-5p/miR-152-5p对早期非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(10): 101-106. |
| [15] | 徐淑媛,纪全江,国丽. 血清sEGFR、CEA及Cyfra21-1水平对非小细胞肺癌患者预后的影响[J]. 山东大学学报 (医学版), 2019, 57(10): 107-111. |
|
||