您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 36-45.doi: 10.6040/j.issn.1671-7554.0.2025.0344

• 临床医学 • 上一篇    

BALF tNGS检测及培养对NSCLC合并IPFD的诊断价值

刘振昆1,吕纪玲2,徐伟伟3,马力天4,5,6,张才擎1,2   

  1. 1.山东大学齐鲁医学院, 山东 济南 250012;2.山东省第二人民医院呼吸与危重症医学科, 山东 济南 250022;3.山东省第二人民医院儿科, 山东 济南 250022;4.空军军医大学唐都医院胸腔外科, 陕西 西安 710038;5.空军军医大学唐都医院中西医结合肿瘤专科, 陕西 西安 710038;6.陕西省中西医结合肿瘤诊疗重点实验室, 陕西 西安 710038
  • 发布日期:2025-11-28
  • 通讯作者: 张才擎. E-mail:freezcq@163.com
  • 基金资助:
    山东省第二人民医院院级科研基金项目(2023GCC04);山东大学横向课题(6020219018)

Value of tNGS testing and conventional culture for BALF in the diagnosis of NSCLC complicated with IPFD

LIU Zhenkun1, LYU Jiling2, XU Weiwei3, MA Litian4,5,6, ZHANG Caiqing1,2   

  1. 1. Qilu Medical College of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan 250022, Shandong, China;
    3. Department of Pediatrics, Shandong Second Provincial General Hospital, Jian 250022, Shandong, China;
    4. Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xian 710038, Shaanxi, China;
    5. Department of Integrated Traditional Chinese and Western Medicine Oncology, Tangdu Hospital, Air Force Military Medical University, Xian 710038, Shaanxi, China;
    6. Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Tumor Diagnosis and Treatment, Xian 710038, Shaanxi, China
  • Published:2025-11-28

摘要: 目的 探究支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)病原微生物靶向测序(targeted next generation sequencing, tNGS)技术与传统培养在非小细胞肺癌(non-small cell lung cancer, NSCLC)合并侵袭性肺真菌病(invasive pulmonary fungal disease, IPFD)中的诊断价值。 方法 回顾性分析2022年9月1日至2025年4月1日40例于山东省第二人民医院临床诊断为NSCLC合并IPFD患者的临床资料,收集BALF样本行tNGS检测与传统培养,对比分析病原检出率及诊断效能。 结果 40例IPFD患者样本中,tNGS和传统培养对真菌的阳性检出率分别为85.0%、52.5%(校正χ2 = 6.86,P=0.01),对细菌的阳性检出率分别为70.0%、50.0%(校正χ2=4.08,P=0.04)。tNGS和传统培养对细菌的检测灵敏度分别为95.5%、86.4%(校正χ2=0.25,P=0.62)。所有患者经抗真菌、细菌及抗肿瘤治疗后均好转出院。 结论 tNGS技术在NSCLC合并IPFD的病原检测中,对真菌和细菌的检测效能均显著优于BALF传统培养。临床上可将tNGS作为早期筛查工具,结合BALF培养、临床特征综合判读,以优化诊疗并避免过度治疗。

关键词: 非小细胞肺癌, 侵袭性肺真菌病, 肺泡灌洗液, 病原微生物靶向测序, 诊断价值

Abstract: Objective To investigate the diagnostic value of targeted next-generation sequencing(tNGS)for pathogens in bronchoalveolar lavage fluid(BALF)compared with traditional culture in non-small cell lung cancer(NSCLC)complicated with invasive pulmonary fungal disease(IPFD). Methods A retrospective analysis was conducted on the clinical data of 40 patients clinically diagnosed with NSCLC complicated with IPFD at Shandong Second Provincial General Hospital from September 1, 2022, to April 1, 2025. BALF samples were collected for tNGS detection and traditional culture, and the pathogen detection rates and diagnostic efficacy were compared and analyzed. Results Among the 40 IPFD patient samples, the positive detection rates for fungi by tNGS and traditional culture were 85.0% and 52.5%, respectively(corrected χ2=6.86, P=0.01), and for bacteria, they were 70.0% and 50.0%, respectively(corrected χ2=4.08, P=0.04). The detection sensitivities for bacteria by tNGS and traditional culture were 95.5% and 86.4%, respectively(corrected χ2=0.25, P=0.62). All patients improved and were discharged after antifungal, antibacterial, and antitumor treatments. Conclusion tNGS technology demonstrates significantly superior detection efficacy for both fungi and bacteria in pathogen detection for NSCLC complicated with IPFD compared to traditional BALF culture. Clinically, tNGS can be used as an early screening tool, and combined with BALF culture and clinical features for comprehensive interpretation, to optimize diagnosis and treatment and avoid overtreatment.

Key words: Non-small cell lung cancer, Invasive pulmonary fungal disease, Bronchoalveolar lavage fluid, Targeted next-generation sequencing, Diagnostic value

中图分类号: 

  • R735.6
[1] Popat S, Mok T, Yang JC, et al. Afatinib in the treatment of EGFR mutation-positive NSCLC: a network meta-analysis[J]. Lung Cancer, 2014, 85(2): 230-238.
[2] Zhang RM, Wu Y, Deng GC, et al. Value of sputum Gram stain, sputum culture, and bronchoalveolar lavage fluid Gram stain in predicting single bacterial pathogen among children with community-acquired pneumonia[J]. BMC Pulm Med, 2022, 22(1): 427. doi:10.1186/s12890-022-02234-1
[3] Collins ME, Popowitch EB, Miller MB. Evaluation of a novel multiplex PCR panel compared to quantitative bacterial culture for diagnosis of lower respiratory tract infections[J]. J Clin Microbiol, 2020, 58(5): e02013-19. doi:10.1128/JCM.02013-19
[4] Zhu N, Lin S, Weng X, et al. Performance of the colloidal gold immunochromatography of cryptococcal antigen on bronchoalveolar lavage fluid for the diagnosis of pulmonary cryptococcosis[J]. Can J Infect Dis Med Microbiol, 2022, 2022: 7876030. doi:10.1155/2022/7876030
[5] Wang D, Wang WL, Ding YJ, et al. Metagenomic next-generation sequencing successfully detects pulmonary infectious pathogens in children with hematologic malignancy[J]. Front Cell Infect Microbiol, 2022, 12: 899028. doi:10.3389/fcimb.2022.899028
[6] Ebinger A, Fischer S, Höper D. A theoretical and genera-lized approach for the assessment of the sample-specific limit of detection for clinical metagenomics[J]. Comput Struct Biotechnol J, 2020, 19: 732-742. doi:10.1016/j.csbj.2020.12.040
[7] Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530.
[8] 世界华人医学真菌专业委员会. 侵袭性肺真菌病诊断路径专家共识(2024版)[J]. 中华检验医学杂志, 2025, 48(4): 459-468. World Society of Chinese Medical Mycology. Expert consensus on the diagnostic pathway for invasive pulmonary fungal disease(2024)[J]. Chinese Journal of Laboratory Medicine, 2025, 48(4): 459-468.
[9] Meyer KC, Raghu G, Baughman RP, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease[J]. Am J Respir Crit Care Med, 2012, 185(9): 1004-1014.
[10] 陶锋, 李一荣, 周艳梅, 等. 靶向宏基因组测序技术在不明原因肺部感染病原学诊断中的价值[J]. 中国病原生物学杂志, 2024, 19(11): 1290-1294. TAO Feng, LI Yirong, ZHOU Yanmei, et al. Targeted metagenomic sequencing in the diagnosis of pulmonary infection of unknown etiology [J]. Journal of Pathogen Biology, 2024, 19(11): 1290-1294.
[11] 颜新生, 张丹, 王栋, 等. 疑似肺炎患者BALF样本应用tNGS技术进行病原学诊断的价值研究[J]. 现代检验医学杂志, 2023, 38(5): 12-16. YAN Xinsheng, ZHANG Dan, WANG Dong, et al. Value of tNGS in the etiological diagnosis of BALF samples from suspected pneumonia patients [J]. Journal of Modern Laboratory Medicine, 2023, 38(5): 12-16.
[12] 母发光, 何海兰, 李晶. 儿童侵袭性肺部真菌感染危险因素分析[J].中国当代儿科杂志, 2014, 16(8): 779-782. MU Faguang, HE Hailan, LI Jing. Risk factors for invasive pulmonary fungal infection in children[J]. Chinese Journal of Contemporary Pediatrics, 2014, 16(8): 779-782.
[13] Jaggi TK, Agarwal R, Tiew PY, et al. Fungal lung di-sease[J]. Eur Respir J, 2024, 64(5): 2400803. doi:10.1183/13993003.00803-2024
[14] Li Z, Lu G, Meng GX. Pathogenic fungal infection in the lung[J]. Front Immunol, 2019, 10: 1524. doi:10.3389/fimmu.2019.01524
[15] Ianiri G, Idnurm A. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization[J]. mBio, 2015, 6(2): e02334-14. doi:10.1128/mBio.02334-14
[16] Bassetti M, Garnacho-Montero J, Calandra T, et al. Intensive care medicine research agenda on invasive fungal infection in critically ill patients[J]. Intensive Care Med, 2017, 43(9): 1225-1238.
[17] Bajaj JS, Reddy RK, Tandon P, et al. Prediction of fungal infection development and their impact on survival using the NACSELD cohort[J]. Am J Gastroenterol, 2018, 113(4): 556-563.
[18] Salazar F, Bignell E, Brown GD, et al. Pathogenesis of respiratory viral and fungal coinfections[J]. Clin Microbiol Rev, 2022, 35(1): e0009421. doi:10.1128/CMR.00094-21
[19] Marr KA, Platt A, Tornheim JA, et al. Aspergillosis complicating severe coronavirus disease[J]. Emerg Infect Dis, 2021, 27(1): 18-25.
[20] White PL, Dhillon R, Cordey A, et al. A national strategy to diagnose coronavirus disease 2019-associated invasive fungal disease in the intensive care unit[J]. Clin Infect Dis, 2021, 73(7): e1634-e1644.
[21] Patel A, Agarwal R, Rudramurthy SM, et al. Multicenter epidemiologic study of coronavirus disease-associated mucormycosis, India[J]. Emerg Infect Dis, 2021, 27(9): 2349-2359.
[22] Paavai TT, Vasanthi V, Rameshkumar A, et al. Maxillary mucormycotic osteonecrosis as a manifestation of post-COVID-19 infection in non-diabetic patients: report of two cases[J]. J Microsc Ultrastruct, 2023, 12(2): 99-103.
[23] Barchiesi F, Orsetti E, Mazzanti S, et al. Candidemia in the elderly: what does it change?[J]. PLoS One, 2017, 12(5): e0176576. doi:10.1371/journal.pone.0176576
[24] Burguete SR, Maselli DJ, Fernandez JF, et al. Lung transplant infection[J]. Respirology, 2013, 18(1): 22-38.
[25] Boch T, Spiess B, Cornely OA, et al. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1, 3-β-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: results of a prospective multicentre study[J]. Clin Microbiol Infect, 2016, 22(10): 862-868.
[26] Linder KA, Kauffman CA, Zhou SW, et al. Performance of the(1, 3)-beta-D-glucan assay on bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis[J]. Mycopathologia, 2020, 185(5): 925-929.
[27] 李晗婷, 韩小雨, 郑雨婷, 等. 肺部侵袭性曲霉菌和白色念珠菌感染的临床与CT表现比较[J]. 临床放射学杂志, 2024, 43(4): 543-548. LI Hanting, HAN Xiaoyu, ZHENG Yuting, et al. Comparison of clinical and CT findings of invasive aspergillus and Candida albicans infections in the lung [J]. Journal of Clinical Radiology, 2024, 43(4): 543-548.
[28] 谷兴丽, 曹明芹, 徐思成, 等. 肺侵袭性真菌感染患者临床与影像学特征对真菌病原体的提示[J]. 中华急诊医学杂志, 2016, 25(7): 7. doi:10.3760/cma.j.issn.1671-0282.2016.07.016 GU Xingli, CAO Mingqin, XU Sicheng, et al. The predictive value of clinical and radiographic features in fungal pathogen identification in immunocompromised patients with pulmonary invasive fungal infection [J]. Chinese Journal of Emergency Medicine, 2016, 25(7): 7. doi:10.3760/cma.j.issn.1671-0282.2016.07.016
[29] Sevilha JB, Rodrigues RS, Barreto MM, et al. Infectious and non-infectious diseases causing the air crescent sign: a state-of-the-art review[J]. Lung, 2018, 196(1): 1-10.
[30] Patterson TF, Thompson GR, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America[J]. Clin Infect Dis, 2016, 63(4): e1-e60.
[31] Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review[J]. Eur Respir Rev, 2011, 20(121): 156-174.
[32] Alsayed AR, Abed A, Khader HA, et al. Molecular accounting and profiling of human respiratory microbial communities: toward precision medicine by targeting the respiratory microbiome for disease diagnosis and treatment[J]. Int J Mol Sci, 2023, 24(4): 4086. doi:10.3390/ijms24044086
[33] Yagi K, Asai N, Huffnagle GB, et al. Early-life lung and gut microbiota development and respiratory syncytial virus infection[J]. Front Immunol, 2022, 13: 877771. doi:10.3389/fimmu.2022.877771
[34] Paglicci L, Borgo V, Lanzarone N, et al. Incidence and risk factors for respiratory tract bacterial colonization and infection in lung transplant recipients[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(6): 1271-1282.
[35] Vientós-Plotts AI, Ericsson AC, Rindt H, et al. Blood cultures and blood microbiota analysis as surrogates for bronchoalveolar lavage fluid analysis in dogs with bacterial pneumonia[J]. BMC Vet Res, 2021, 17(1): 129. doi:10.1186/s12917-021-02841-w
[36] Zhang XQ, Lei Y, Tan XL, et al. Optimization of early antimicrobial strategies for lung transplant recipients based on metagenomic next-generation sequencing[J]. Front Microbiol, 2022, 13: 839698. doi:10.3389/fmicb.2022.839698
[37] Deng ZF, Li CH, Wang YJ, et al. Targeted next-generation sequencing for pulmonary infection diagnosis in patients unsuitable for bronchoalveolar lavage[J]. Front Med, 2023, 10: 1321515. doi:10.3389/fmed.2023.1321515
[38] Poulsen SH, Søgaard KK, Fuursted K, et al. Evaluating the diagnostic accuracy and clinical utility of 16S and 18S rRNA gene targeted next-generation sequencing based on five years of clinical experience[J]. Infect Dis, 2023, 55(11): 767-775.
[39] Kildow BJ, Ryan SP, Danilkowicz R, et al. Next-generation sequencing not superior to culture in periprosthetic joint infection diagnosis[J]. Bone Joint J, 2021, 103-B(1): 26-31.
[40] Flurin L, Wolf MJ, Greenwood-Quaintance KE, et al. Targeted next generation sequencing for elbow periprosthetic joint infection diagnosis[J]. Diagn Microbiol Infect Dis, 2021, 101(2): 115448. doi:10.1016/j.diagmicrobio.2021.115448
[41] Uddin MKM, Cabibbe AM, Nasrin R, et al. Targeted next-generation sequencing of Mycobacterium tuberculosis from patient samples: lessons learned from high drug-resistant burden clinical settings in Bangladesh[J]. Emerg Microbes Infect, 2024, 13(1): 2392656. doi:10.1080/22221751.2024.2392656
[42] Bagratee TJ, Studholme DJ. Targeted genome sequencing for tuberculosis drug susceptibility testing in South Africa: a proposed diagnostic pipeline[J]. Access Microbiol, 2024, 6(2): 000740.v3. doi:10.1099/acmi.0.000740.v3
[43] Chen QY, Yi J, Liu YW, et al. Clinical diagnostic value of targeted next-generation sequencing for infectious diseases(Review)[J]. Mol Med Rep, 2024, 30(3): 153. doi:10.3892/mmr.2024.13277
[44] Murphy SG, Smith C, Lapierre P, et al. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing[J]. Front Public Health, 2023, 11: 1206056. doi:10.3389/fpubh.2023.1206056
[45] Zhang P, Liu BY, Zhang S, et al. Clinical application of targeted next-generation sequencing in severe pneumonia: a retrospective review[J]. Crit Care, 2024, 28(1): 225. doi:10.1186/s13054-024-05009-8
[1] 赵汉卿,周新睿,李子建,唐兴. 循环肿瘤细胞联合血清学检测在非小细胞肺癌中的应用[J]. 山东大学学报 (医学版), 2025, 63(5): 79-85.
[2] 徐年兴,魏东,乔俊杰,战炳炎. CD8+、IL-6和PaO2对不可切除ⅢB/C和Ⅳ期非小细胞肺癌免疫治疗触发放射召回性肺炎的预测价值[J]. 山东大学学报 (医学版), 2025, 63(2): 29-35.
[3] 张荣雨,赵文,李洪欣,杨闯,王健,韩春燕,李际盛. 奥西替尼联合化疗一线治疗EGFR-RAD51融合突变转移性肺腺癌1例[J]. 山东大学学报 (医学版), 2024, 62(5): 116-120.
[4] 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82.
[5] 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37.
[6] 马瑞杰,朱良明,左太阳,李春海,张楠,孙志钢. 微波消融治疗非小细胞肺癌根治术后肺寡转移瘤的预后分析[J]. 山东大学学报 (医学版), 2022, 60(12): 63-68.
[7] 张阿敏,李国盛,李福海. 儿童支原体大叶性肺炎肺泡灌洗液细胞因子与局部炎症的相关性[J]. 山东大学学报 (医学版), 2022, 60(11): 82-88.
[8] 刘会宁,彭军,任迎春,杨光,王文豪,刘金锋,田勍. 34例胸腔镜下肺楔形切除与21例肺段切除对位于肺段P区的ⅠA1期非小细胞肺癌治疗比较[J]. 山东大学学报 (医学版), 2022, 60(11): 38-43.
[9] 丁子琛,王浩桦,周立雯,丛慧文,李承圣,包绮晗,杨毅,王廉源,王素珍,石福艳. 基于贝叶斯累加回归树模型的非小细胞肺癌患者个性化疗效研究[J]. 山东大学学报 (医学版), 2022, 60(10): 92-98.
[10] 刘小璟,夏西燕,肖珂,陈文丹,庄学伟. 外泌体lncRNA OGFRP1在84例非小细胞肺癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2020, 58(11): 71-75.
[11] 魏萍,杜鲁涛,王卿,展垚,谢玉姣,张淑君,段伟丽,王传新. 血清外泌体miR-20b-5p对非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(4): 91-96.
[12] 王伟,刘拥征,李岭. 酸浆苦素B对人非小细胞肺癌细胞增殖、迁移及凋亡的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 13-18.
[13] 王建丽,王筱静,孙玉莲,胡晓乐,栾晓嵘. 吉非替尼联合化疗治疗50例晚期非小细胞肺癌患者的疗效[J]. 山东大学学报 (医学版), 2019, 57(11): 20-26.
[14] 郑清月,赵秋红,渠香云,董肇楠,马雪情,贾云莉. 血清外泌体miR-205-5p/miR-152-5p对早期非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(10): 101-106.
[15] 徐淑媛,纪全江,国丽. 血清sEGFR、CEA及Cyfra21-1水平对非小细胞肺癌患者预后的影响[J]. 山东大学学报 (医学版), 2019, 57(10): 107-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!