您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 117-122.doi: 10.6040/j.issn.1671-7554.0.2024.1330

• 综述 • 上一篇    

自身免疫性郎飞结病磁共振成像研究进展

单体晓1,2,杜韦辰3,王勤周4,李安宁1,李春海1   

  1. 1.山东大学齐鲁医院放射科, 山东 济南 250012;2.日照市中医医院CT室, 山东 日照 276800;3.临沂市莒南县人民医院放射科, 山东 临沂 276600;4.山东大学齐鲁医院神经内科, 山东 济南 250012
  • 发布日期:2025-11-28
  • 通讯作者: 李安宁. E-mail:anningli00@163.com;李春海. E-mail:miami305@126.com
  • 基金资助:
    国家自然科学基金面上项目(82372020);泰山学者青年专家资助计划(tsqn202408343);山东大学临床研究培育项目(No2020SDUCRCC019)

Research progress of magnetic resonance imaging in autoimmune nodopathies

SHAN Tixiao1,2, DU Weichen3, WANG Qinzhou4, LI Anning1, LI Chunhai1   

  1. 1. Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of CT, Rizhao Hospital of Traditional Chinese Medicine, Rizhao 276800, Shandong, China;
    3. Department of Radiology, The Peoples Hospital of Junan, Linyi 276600, Shandong, China;
    4. Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2025-11-28

摘要: 自身免疫性郎飞结病(autoimmune nodopathies, AN)是一种自身抗体,尤其是结旁蛋白IgG4亚型自身抗体作用于郎飞结引起的脱髓鞘病理改变,从而产生一系列临床表现的周围神经病,又统称为结病或结旁病。目前对于结病/结旁病的研究多聚焦于其临床、病理及免疫学等特征,其诊断也多依赖于抗体检测及脑脊液检查等有创检查。周围神经磁共振成像作为无创检查已越来越多地被用于评估周围神经疾病,通过不断了解不同周围神经疾病的形态学及定量变化,可以更好地理解疾病潜在的病理生理过程,为疾病的诊断及治疗评估提供理论支持。因此,本文就磁共振腰骶丛神经成像在结病/结旁病中的应用做一综述,为临床早期诊断及鉴别诊断提供佐证,为制定精准治疗方案提供依据。

关键词: 磁共振神经成像, 自身免疫性郎飞结病, 慢性炎性脱髓鞘性多发性神经根神经病, 吉兰-巴雷综合征, 抗体

Abstract: Autoimmune nodopathies(AN)is a type of autoimmune disease involving autoantibodies, particularly the lgG4 subtype, that act on demyelinating pathological changes on the node of Ranvier. These changes produce a series of clinical manifestations of peripheral neuropathy, collectively referred to as nodo-paranodopathy. Currently, research on AN primarily focuses on their clinical, pathological, and immunological characteristics. Diagnosis mainly depends on invasive examinations, such as antibody detection and cerebrospinal fluid analysis. Magnetic resonance imaging(MRI)of the peripheral nerves has been increasingly used as a noninvasive method to evaluate peripheral nerve diseases. Focusing on the morphological and quantitative changes of different peripheral nerve diseases continuously can help us better understand the potential pathophysiological processes of these diseases, providing theoretical support for their diagnosis and treatment evaluation. Thus, this article reviews the application of lumbosacral plexus magnetic resonance imaging in AN to provide supporting evidence for early clinical diagnosis, differential diagnosis, and the development of accurate treatment plans.

Key words: Magnetic resonance neurography, Autoimmune nodopathies, Chronic inflammatory demyelinating polyradiculoneuropathy, Guillain-Barre Syndrome, Antibodies

中图分类号: 

  • R445.2
[1] Van den Bergh PYK, van Doorn PA, Hadden RDM, et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint Task Force-Second revision[J]. J Peripher Nerv Syst, 2021, 26(3): 242-268.
[2] Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society: first revision[J]. J Peripher Nerv Syst, 2010, 15(3): 185-195.
[3] Appeltshauser L, Brunder AM, Heinius A, et al. Antiparanodal antibodies and IgG subclasses in acute autoimmune neuropathy[J]. Neurol Neuroimmunol Neuroinflamm, 2020, 7(5): e817. doi: 10.1212/NXI.0000000000000817
[4] Doppler K, Appeltshauser L, Wilhelmi K, et al. Destruction of paranodal architecture in inflammatory neuropathy with anti-contactin-1 autoantibodies[J]. J Neurol Neurosurg Psychiatry, 2015, 86(7): 720-728.
[5] Vallat JM, Yuki N, Sekiguchi K, et al. Paranodal lesions in chronic inflammatory demyelinating polyneuropathy associated with anti-Neurofascin 155 antibodies[J]. Neuromuscul Disord, 2017, 27(3): 290-293.
[6] Koike H, Nishi R, Ikeda S, et al. Ultrastructural mechanisms of macrophage-induced demyelination in CIDP[J]. Neurology, 2018, 91(23): 1051-1060.
[7] Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy[J]. Ann Neurol, 2013, 73(3): 370-380.
[8] Querol L, Rojas-García R, Diaz-Manera J, et al. Rituximab in treatment-resistant CIDP with antibodies against paranodal proteins[J]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(5): e149. doi: 10.1212/NXI.0000000000000149
[9] Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg[J]. Neurology, 2014, 82(10): 879-886.
[10] Doppler K, Appeltshauser L, Villmann C, et al. Auto-antibodies to contactin-associated protein 1(Caspr)in two patients with painful inflammatory neuropathy[J]. Brain, 2016, 139(10): 2617-2630.
[11] Pascual-Goñi E, Fehmi J, Lleixà C, et al. Antibodies to the Caspr1/contactin-1 complex in chronic inflammatory demyelinating polyradiculoneuropathy[J]. Brain, 2021, 144(4): 1183-1196.
[12] Delmont E, Manso C, Querol L, et al. Autoantibodies to nodal isoforms of neurofascin in chronic inflammatory demyelinating polyneuropathy[J]. Brain, 2017, 140(7): 1851-1858.
[13] Stengel H, Vural A, Brunder AM, et al. Anti-pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy[J]. Neurol Neuroimmunol Neuroinflamm, 2019, 6(5): e603. doi: 10.1212/NXI.0000000000000603
[14] Fehmi J, Davies AJ, Walters J, et al. IgG1 pan-neurofascin antibodies identify a severe yet treatable neuropathy with a high mortality[J]. J Neurol Neurosurg Psychiatry, 2021, 92(10): 1089-1095.
[15] Koike H, Kadoya M, Kaida KI, et al. Paranodal dissection in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin-155 and anti-contactin-1 antibodies[J]. J Neurol Neurosurg Psychiatry, 2017, 88(6): 465-473.
[16] Cortese A, Lombardi R, Briani C, et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: Clinical relevance of IgG isotype[J]. Neurol Neuroimmunol Neuroinflamm, 2019, 7(1): e639. doi: 10.1212/NXI.0000000000000639
[17] Vallat JM, Magy L, Corcia P, et al. Ultrastructural lesions of nodo-paranodopathies in peripheral neuropathies[J]. J Neuropathol Exp Neurol, 2020, 79(3): 247-255.
[18] Vallat JM, Mathis S, Magy L, et al. Subacute nodopathy with conduction blocks and anti-neurofascin 140/186 antibodies: an ultrastructural study[J]. Brain, 2018, 141(7): e56. doi: 10.1093/brain/awy134
[19] 中华医学会神经病学分会, 中华医学会神经病学分会周围神经病协作组. 自身免疫性郎飞结病诊断和治疗中国专家共识2023 [J]. 中华神经科杂志, 2024(5): 437-442.
[20] Miura Y, Devaux JJ, Fukami Y, et al. Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory Ataxia[J]. Brain, 2015, 138(6): 1484-1491.
[21] Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg[J]. Neurology, 2014, 82(10): 879-886. doi: 10.1212/WNL.0000000000000205
[22] Devaux JJ, Miura Y, Fukami Y, et al. Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuro-pathy[J]. Neurology, 2016, 86(9): 800-807.
[23] Ogata H, Yamasaki R, Hiwatashi A, et al. Characterization of IgG4 anti-neurofascin 155 antibody-positive polyneuropathy[J]. Ann Clin Transl Neurol, 2015, 2(10): 960-971.
[24] Filler AG, Kliot M, Winn HR, et al. Magnetic resonance neurography[J]. Lancet, 1993, 341(8846): 659-661.
[25] 吴菲, 王卫卫, 刘含秋. 慢性炎性脱髓鞘性多发性神经根神经病的MRI研究进展[J]. 国际医学放射学杂志, 2019, 42(5): 543-546. WU Fei, WANG Weiwei, LIU Hanqiu. The research progress of MRI in chronic inflammatory demyelinating polyradiculoneuropathy[J]. International Journal of Medical Radiology, 2019, 42(5): 543-546.
[26] 马妍, 鲁明, 樊东升. 抗NF155 IgG4抗体阳性慢性炎性脱髓鞘性多发性神经根神经病一例并文献复习[J]. 中国神经免疫学和神经病学杂志, 2017, 24(3): 188-192. MA Yan, LU Ming, FAN Dongsheng. The features of an anti-NF155 IgG4 antibodies positive chronic inflammatory demyelinating polyradiculoneuropathy patient and a literature review[J]. Chinese Journal of Neuroimmunology and Neurology, 2017, 24(3): 188-192.
[27] 卢茜, 朱敏, 洪道俊. 青年男性肢体震颤伴踮脚无力1年——NF155 IgG4抗体阳性慢性炎性脱髓鞘性多发性神经根神经病 [J]. 中国神经精神疾病杂志, 2020, 46(4): 248-251.
[28] Kuwahara M, Suzuki H, Oka N, et al. ELectron microscopic abnormality and therapeutic efficacy in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin155 immunoglobulin G4 antibody[J]. Muscle Nerve, 2018, 57(3): 498-502.
[29] Kira JI, Yamasaki R, Ogata H. Anti-neurofascin autoantibody and demyelination[J]. Neurochem Int, 2019, 130: 104360. doi: 10.1016/j.neuint.2018.12.011
[30] Franques J, Chapon F, Devaux J, et al. Teaching Neuro Images: cranial nerve hypertrophy in IgG4 anti-neurofascin 155 antibody-positive polyneuropathy[J]. Neurology, 2017, 88(7): 52. doi: 10.1212/WNL.0000000000003616
[31] Ogata H, Zhang X, Inamizu S, et al. Optic, trigeminal, and facial neuropathy related to anti-neurofascin 155 antibody[J]. Ann Clin Transl Neurol, 2020, 7(11): 2297-2309.
[32] Wang WY, Liu LC, Zhang MZ, et al. Case report: autoimmune nodopathy with concurrent serum and CSF IgG4 anti-neurofascin 155 antibodies[J]. Front Immunol, 2022, 13: 1028282. doi: 10.3389/fimmu.2022.1028282
[33] 陈海, 卢岩, 邸丽, 等. 抗神经束蛋白155抗体阳性的结旁病临床异质性研究 [J]. 中国现代神经疾病杂志, 2022, 22(4): 291-299.
[34] 刘炳佑, 孙翀, 陈讷, 等. 抗神经束蛋白155抗体阳性慢性炎性脱髓鞘性多发性神经根神经病的臂丛神经影像学特点研究 [J]. 中国临床神经科学, 2021, 29(1): 22-27.
[35] Hiwatashi A, Togao O, Yamashita K, et al. Evaluation of chronic inflammatory demyelinating polyneuropathy: 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging(3D SHINKEI)[J]. Eur Radiol, 2017, 27(2): 447-453.
[36] Wang WQ, Liu C, Li W, et al. Clinical and diagnostic features of anti-neurofascin-155 antibody-positive neuropathy in Han Chinese[J]. Ann Clin Transl Neurol, 2022, 9(5): 695-706.
[37] Lu YC, Wang YJ, Hu JN, et al. Semiquantitative assessment of preganglionic nerves for chronic immune-mediated neuropathies using brachial plexus magnetic resonance imaging[J]. Quant Imaging Med Surg, 2024, 14(4): 2968-2977.
[38] Wang WQ, Liu C, Li W, et al. Clinical and diagnostic features of anti-neurofascin-155 antibody-positive neuropathy in Han Chinese[J]. Ann Clin Transl Neurol, 2022, 9(5): 695-706.
[39] Kronlage M, Pitarokoili K, Schwarz D, et al. Diffusion tensor imaging in chronic inflammatory demyelinating polyneuropathy: diagnostic accuracy and correlation with electrophysiology[J]. Invest Radiol, 2017, 52(11): 701-707.
[40] Jeon T, Fung MM, Koch KM, et al. Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions[J]. J Magn Reson Imaging, 2018, 47(5): 1171-1189.
[41] 吴菲, 王卫卫, 李冲, 等. T2 mapping在周围神经疾病中的研究进展[J]. 中国医学计算机成像杂志, 2020, 26(1): 97-100. WU Fei, WANG Weiwei, LI Chong, et al. The research progress of T2 mapping in peripheral nerve disorders[J]. Chinese Computed Medical Imaging, 2020, 26(1): 97-100.
[42] 吴文骏, 周红艳, 秦子及, 等. 免疫介导周围神经病的磁共振神经成像(MRN)特征研究 [J]. 临床放射学杂志, 2020, 39(10): 1941-1946.
[43] Feuerriegel GC, Marth AA, Germann C, et al. 7 T MRI of the cervical neuroforamen: assessment of nerve root compression and dorsal root Ganglia in patients with radiculopathy[J]. Invest Radiol, 2024, 59(6): 450-457.
[44] Yoon D, Biswal S, Rutt B, et al. Feasibility of 7T MRI for imaging fascicular structures of peripheral nerves[J]. Muscle Nerve, 2018, 57(3): 494-498.
[45] Sveinsson B, Rowe OE, Stockmann JP, et al. Feasibility of simultaneous high-resolution anatomical and quantitative magnetic resonance imaging of sciatic nerves in patients with Charcot-Marie-Tooth type 1A(CMT1A)at 7T[J]. Muscle Nerve, 2022, 66(2): 206-211.
[46] Hashiba J, Yokota H, Abe K, et al. Ultrasound-based radiomic analysis of the peripheral nerves for differentiation between CIDP and POEMS syndrome[J]. Acta Radiol, 2023, 64(9): 2627-2635.
[1] 赵汉卿,周新睿,李子建,唐兴. 循环肿瘤细胞联合血清学检测在非小细胞肺癌中的应用[J]. 山东大学学报 (医学版), 2025, 63(5): 79-85.
[2] 杨卫芳,徐宏,刘元涛,赵蕙琛. 促甲状腺激素受体抗体在Graves病复发中的作用机制及其临床意义[J]. 山东大学学报 (医学版), 2025, 63(4): 116-121.
[3] 林雨洋,王蓓,李菲. 大于10 mm甲状腺乳头状癌侧颈区淋巴结转移预测[J]. 山东大学学报 (医学版), 2024, 62(6): 54-64.
[4] 徐梦纯,王静,郝田宇,王鹏飞,吴远宁,董亮. 抗磷脂综合征引起的弥漫性肺泡出血1例[J]. 山东大学学报 (医学版), 2024, 62(5): 112-115.
[5] 徐芳,田国雄,孙倍倍,陈馨怡,陈高莹,张睿琦,应颂敏,吴妙莲,张超,吴优倩. 重度哮喘的生物与细胞疗法研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 35-42.
[6] 刁玉洁,林琳,李文瑄,王洲洋,江蓓,胡迎迎,刘广义. NPR预测ANCA相关血管炎不良肾脏预后及其协同多因素优化模型[J]. 山东大学学报 (医学版), 2024, 62(2): 60-68.
[7] 王蕾,向淇,刘学伍. 伴系统性硬化症、类风湿关节炎的副肿瘤神经综合征1例[J]. 山东大学学报 (医学版), 2023, 61(7): 118-120.
[8] 李夕凤,李红梅. 脑脊液CXCL10:抗NMDAR脑炎潜在的生物学标志物[J]. 山东大学学报 (医学版), 2023, 61(6): 47-52.
[9] 高丽鹤,任婧婧,李岩,李强,马万山,李焕杰,陈振,欧兰香,张绍明,朱之炜,丁兴龙,李红霞,王岩,张忠法,汪运山. 新型冠状病毒中和抗体酶联免疫检测试剂盒的制备及应用[J]. 山东大学学报 (医学版), 2023, 61(4): 77-85.
[10] 周娜,潘英芳,邵静茹,李京,宋永红,徐群,吕红娟. 山东省济南市RhD阴性无偿献血者表型分布调查及不规则抗体筛查的临床意义[J]. 山东大学学报 (医学版), 2022, 60(7): 98-103.
[11] 成晅,杨帆,潘正论. 系统性红斑狼疮、抗磷脂抗体综合征伴颅内静脉窦血栓形成1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(6): 70-74.
[12] 孔昕欣,孙书珍,李倩,陈元,周爱华,王莉,姚秀俊. 抗H因子抗体阳性溶血尿毒综合征7例分析[J]. 山东大学学报 (医学版), 2022, 60(4): 82-86.
[13] 冯宝民,王舟,徐晗,李佳存,于乔文,修建军. 抗髓鞘少突胶质细胞糖蛋白IgG抗体相关疾病临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(3): 45-50.
[14] 王洲洋,江蓓,李宪花,甄军晖,杨向东,胡昭,刘广义,裴斐. 感染性心内膜炎、急性肾损伤伴PR3-ANCA阳性患者1例报道[J]. 山东大学学报 (医学版), 2022, 60(2): 60-64.
[15] 赵永恒,高靓,李保敏. 儿童抗Ma2抗体阳性脑炎2例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(5): 96-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!