您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (6): 47-52.doi: 10.6040/j.issn.1671-7554.0.2023.0099

• 临床医学 • 上一篇    

脑脊液CXCL10:抗NMDAR脑炎潜在的生物学标志物

李夕凤,李红梅   

  1. 山东大学齐鲁医院神经内科, 山东 济南 250012
  • 发布日期:2023-06-06
  • 通讯作者: 李红梅. E-mail:hmqq@163.com

Cerebrospinal fluid CXCL10: a valuable biomarker for anti-NMDAR encephalitis

LI Xifeng, LI Hongmei   

  1. Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2023-06-06

摘要: 目的 探讨抗N-甲基-D-天冬氨酸受体(NMDAR)脑炎相关的炎性生物标志物,为临床提供帮助。 方法 收集18例抗NMDAR脑炎(抗NMDAR脑炎组)、12例抗富含亮氨酸胶质瘤失活蛋白1(LGI1)抗体脑炎(抗LGI1抗体脑炎组)、12例对照组患者的血清及脑脊液标本,采用酶联免疫吸附试验(ELISA)法检测各组血清及脑脊液C-X-C基序配体10(CXCL10)水平,采用SPSS 26.0软件进行数据统计分析,分别比较抗NMDAR脑炎组与对照组、抗LGI1抗体脑炎组与对照组、抗NMDAR脑炎组与抗LGI1抗体脑炎组脑脊液及血清CXCL10水平差异,分析CXCL10水平与抗NMDAR脑炎患者临床指标的相关性。 结果 抗NMDAR脑炎组脑脊液CXCL10水平明显高于对照组[168.29 pg/mL(126.74 pg/mL)vs 82.11 pg/mL(43.61 pg/mL),P=0.003],抗NMDAR脑炎组脑脊液CXCL10水平明显高于抗LGI1抗体脑炎组[168.29 pg/mL(126.74 pg/mL)vs 75.72 pg/mL(83.39 pg/mL),P=0.008]。抗NMDAR脑炎患者脑脊液CXCL10水平与脑脊液IgM水平呈正相关(相关系数rs=0.630,P=0.007)。 结论 脑脊液CXCL10是抗NMDAR脑炎潜在的生物标志物,且存在一定特异性。

关键词: 抗N-甲基-D-天冬氨酸受体脑炎, 抗富含亮氨酸胶质瘤失活蛋白1抗体脑炎, C-X-C基序配体10, 脑脊液

Abstract: Objective To explore the inflammatory biomarkers related to anti-NMDAR encephalitis so as to provide clinical reference. Methods Serum and cerebrospinal fluid(CSF)samples were collected, including 18 cases with anti-NMDAR encephalitis(anti-NMDAR encephalitis group), 12 cases with anti-leucine rich glioma inactivated 1 protein(LGI1)antibody encephalitis(anti-LGI1 antibody encephalitis group)and 12 cases in the control group. The CSF and serum levels of CXC-motif ligand 10(CXCL10)of all three groups were detected with enzyme linked immunosorbent assay(ELISA). Data obtained were analyzed with SPSS 26.0. The differences in CXCL10 level were analyzed, and the correlation between CXCL10 level and clinical indicators of anti-NMDAR encephalitis was assessed. Results The level of CXCL10 in CSF of anti-NMDAR encephalitis group was significantly higher than that of the control group [168.29 pg/mL(126.74 pg/mL)vs 82.11 pg/mL(43.61 pg/mL), P=0.003], and the anti-LGI1 antibody encephalitis group [168.29 pg/mL(126.74 pg/mL)vs 75.72 pg/mL(83.39 pg/mL), P=0.008]. The CXCL10 level in patients with anti-NMDAR encephalitis was positively correlated with the IgM level(rs=0.630, P=0.007). Conclusion CXCL10 in CSF is a valuable biomarker with specificity for anti-NMDAR encephalitis.

Key words: Anti-N-methyl-D-aspartate receptor encephalitis, Anti-leucine rich glioma inactivated 1 protein antibody encephalitis, CXC-motif ligand 10, Cerebrospinal fluid

中图分类号: 

  • R574
[1] Dalmau J, Graus F. Antibody-mediated encephalitis [J]. N Engl J Med, 2018, 378(9): 840-851.
[2] Dalmau J, Tüzün E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma [J]. Ann Neurol, 2007, 61(1): 25-36.
[3] Dalmau J, Lancaster E, Martinez-Hernandez E, et al. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis [J]. Lancet Neurol, 2011, 10(1): 63-74.
[4] Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis [J]. Lancet Neurol, 2016, 15(4): 391-404.
[5] 中华医学会神经病学分会. 中国自身免疫性脑炎诊治专家共识[J]. 中华神经科杂志, 2017, 50(2): 91-98. Expert consensus on diagnosis and treatment of autoimmune encephalitis in China [J]. Chinese Journal of Neurology, 2017, 50(2): 91-98.
[6] Liu JW, Liu L, Kang WT, et al. Cytokines/chemokines: potential biomarkers for non-paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis [J]. Front Neurol, 2020, 11: 582296. doi: 10.3389/fneur.2020.582296.
[7] Gresa-Arribas N, Titulaer MJ, Torrens A, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study [J]. Lancet Neurol, 2014, 13(2): 167-177.
[8] Dalmau J. NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: the 2016 Cotzias Lecture [J]. Neurology, 2016, 87(23): 2471-2482.
[9] Jones BE, Tovar KR, Goehring A, et al. Autoimmune receptor encephalitis in mice induced by active immunization with conformationally stabilized holoreceptors [J]. Sci Transl Med, 2019, 11(500): eaaw0044. doi: 10.1126/scitranslmed.aaw0044.
[10] Deng B, Liu XN, Li X, et al. Raised cerebrospinal fluid BAFF and APRIL levels in anti-N-methyl-D-aspartate receptor encephalitis: correlation with clinical outcome [J]. J Neuroimmunol, 2017, 305: 84-91. doi:10.1016/j.jneuroim.2017.01.02.
[11] Liba Z, Kayserova J, Elisak M, et al. Anti-N-methyl-D-aspartate receptor encephalitis: the clinical course in light of the chemokine and cytokine levels in cerebrospinal fluid [J]. J Neuroinflammation, 2016, 13(1): 55.
[12] Leypoldt F, Höftberger R, Titulaer MJ, et al. Investigations on CXCL13 in anti-N-methyl-D-aspartate receptor encephalitis: a potential biomarker of treatment response [J]. JAMA neurol, 2015, 72(2): 180-186.
[13] Kothur K, Wienholt L, Mohammad SS, et al. Utility of CSF cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and enteroviral encephalitis [J]. PLoS One, 2016, 11(8): e0161656. doi: 10.1371/journal.pone.0161656.
[14] Dao LM, Machule ML, Bacher P, et al. Decreased inflammatory cytokine production of antigen-specific CD4(+)T cells in NMDA receptor encephalitis [J]. J Neurol, 2021, 268(6): 2123-2131.
[15] Kothur K, Wienholt L, Brilot F, et al. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review [J]. Cytokine, 2016, 77: 227-237. doi:10.1016/j.cyto.2015.10.001.
[16] Zlotnik A, Yoshie O. The chemokine superfamily revisited [J]. Immunity, 2012, 36(5): 705-716.
[17] Lebre MC, Burwell T, Vieira PL, et al. Differential expression of inflammatory chemokines by Th1- and Th2-cell promoting dendritic cells: a role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation [J]. Immunol Cell Biol, 2005, 83(5): 525-535.
[18] Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells(Th1s)and Th2s [J]. J Exp Med, 1998, 187(1): 129-134.
[19] Antonelli A, Ferrari SM, Giuggioli D, et al. Chemokine(C-X-C motif)ligand(CXCL)10 in autoimmune diseases [J]. Autoimmun Rev, 2014, 13(3): 272-280.
[20] Sørensen TL, Tani M, Jensen J, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients [J]. J Clin Invest, 1999, 103(6): 807-815.
[21] Yamamoto J, Adachi Y, Onoue Y, et al. Differential expression of the chemokine receptors by the Th1- and Th2-type effect populations within circulating CD4+ T cells [J]. J Leukoc Biol, 2000, 68(4): 568-574.
[22] Farber JM. Mig and IP-10: CXC chemokines that target lymphocytes [J]. J Leukoc Biol, 1997, 61(3): 246-257.
[23] Cole KE, Strick CA, Paradis TJ, et al. Interferon-inducible T cell alpha chemoattractant(I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3 [J]. J Exp Med, 1998, 187(12): 2009-2021.
[24] Hsieh MF, Lai SL, Chen JP, et al. Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus [J]. J Immunol, 2006, 177(3): 1855-1863.
[25] Dufour JH, Dziejman M, Liu MT, et al. IFN-gamma-inducible protein 10(IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking [J]. J Immunol, 2002, 168(7): 3195-3204.
[26] Martinez-Hernandez E, Horvath J, Shiloh-Malawsky Y, et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis [J]. Neurology, 2011, 77(6): 589-593.
[27] Byun JI, Lee ST, Moon J, et al. Distinct intrathecal interleukin-17/interleukin-6 activation in anti-N-methyl-d-aspartate receptor encephalitis [J]. J Neuroimmunol, 2016, 297: 141-147. doi:10.1016/j.jneuroim.2016.05.023.
[28] Fife BT, Kennedy KJ, Paniagua MC, et al. CXCL10(IFN-gamma-inducible protein-10)control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis [J]. J Immunol, 2001, 166(12): 7617-7624.
[29] Roberts WK, Blachère NE, Frank MO, et al. A destructive feedback loop mediated by CXCL10 in central nervous system inflammatory disease [J]. Ann Neurol, 2015, 78(4): 619-629.
[30] Müller M, Carter S, Hofer MJ, et al. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity:a tale of conflict and conundrum [J]. Neuropathol Appl Neurobiol, 2010, 36(5): 368-387.
[31] Patel DD, Zachariah JP, Whichard LP. CXCR3 and CCR5 ligands in rheumatoid arthritis synovium [J]. Clin Immunol, 2001, 98(1): 39-45.
[32] Narumi S, Takeuchi T, Kobayashi Y, et al. Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus [J]. Cytokine, 2000, 12(10): 1561-1565.
[33] Fujii H, Shimada Y, Hasegawa M, et al. Serum levels of a Th1 chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC, are elevated in patients with systemic sclerosis [J]. J Dermatol Sci, 2004, 35(1): 43-51.
[34] Antonelli A, Ferrari SM, Corrado A, et al. CXCR3, CXCL10 and type 1 diabetes [J]. Cytokine Growth Factor Rev, 2014, 25(1): 57-65.
[35] Muehlinghaus G, Cigliano L, Huehn S, et al. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells [J]. Blood, 2005, 105(10): 3965-3971.
[36] Tüzün E, Zhou L, Baehring JM, et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma [J]. Acta Neuropathol, 2009, 118(6): 737-743.
[37] Irani SR, Pettingill P, Kleopa KA, et al. Morvan syndrome: clinical and serological observations in 29 cases [J]. Ann Neurol, 2012, 72(2): 241-255.
[38] Huijbers MG, Querol LA, Niks EH, et al. The expanding field of IgG4-mediated neurological autoimmune disorders [J]. Eur J Neurol, 2015, 22(8): 1151-1161.
[39] Hashizume M, Tan SL, Takano J, et al. Tocilizumab, A humanized anti-IL-6R antibody, as an emerging therapeutic option for rheumatoid arthritis: molecular and cellular mechanistic insights [J]. Int Rev Immunol, 2015, 34(3): 265-279.
[40] Araki M, Matsuoka T, Miyamoto K, et al. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study [J]. Neurology, 2014, 82(15): 1302-1306.
[1] 侯少瑾,王云凤,曹丽丽,刘学伍,赵秀鹤,王胜军. 视神经脊髓炎谱系疾病53例与多发性硬化11例的脑脊液检测比较[J]. 山东大学学报 (医学版), 2023, 61(1): 32-37.
[2] 苗萌,贾国勇,刘颖,王翠兰. 36例成人流行性乙型脑炎临床分析和影像学特点[J]. 山东大学学报 (医学版), 2018, 56(2): 23-27.
[3] 王春来, 徐淑军, 王洪亮, 尚景瑞. 神经内镜下外伤性脑脊液鼻漏修补的临床研究[J]. 山东大学学报(医学版), 2015, 53(3): 69-72.
[4] 黄景阳1,杨承慧1,马坤润1,刘曦1,王逸飞1,陈海丽1,刘宝义2,袁中瑞1. HMGB1介导急性高血糖对脑缺血大鼠血-脑脊液屏障的损伤[J]. 山东大学学报(医学版), 2013, 51(9): 17-21.
[5] 曹伟,辛涛,刘威,张永超. 桥小脑角区肿瘤术后隐匿性脑脊液漏临床分析[J]. 山东大学学报(医学版), 2013, 51(12): 78-81.
[6] 屈传强1,焉传祝2,陈裴3,王翠兰3,郭洪志2. 基质金属蛋白酶在脑白质疏松症血-脑脊液屏障机制中的实验研究[J]. 山东大学学报(医学版), 2012, 50(10): 23-27.
[7] 秦延江,刘师莲,杨银荣,柏淑美,张旭华,邓小梅 . 中枢神经系统脱髓鞘疾病脑脊液蛋白质组学研究[J]. 山东大学学报(医学版), 2008, 46(1): 9-14.
[8] 李敏,王翠兰,邓小梅,李季春,姜勇,苏传生,张安新 . Mollaret脑膜炎脑脊液细胞学研究[J]. 山东大学学报(医学版), 2007, 45(8): 862-863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!