您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (4): 68-77.doi: 10.6040/j.issn.1671-7554.0.2024.0185

• 临床医学 • 上一篇    

小肠黏膜下层处理的间充质干细胞片促进伤口愈合

沈飞飞,李栋,刘玲红,鞠秀丽   

  1. 山东大学齐鲁医院儿科, 山东 济南 250012
  • 发布日期:2024-05-16
  • 通讯作者: 鞠秀丽. E-mail:jxlqlyy@163.com
  • 基金资助:
    山东省自然科学基金(ZR2023MH079)

Umbilical cord mesenchymal stem cells sheets treated by small intestinal submucosa promote wound healing

SHEN Feifei, LI Dong, LIU Linghong, JU Xiuli   

  1. Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2024-05-16

摘要: 目的 探讨细胞外基质(extracellular matrix, ECM),尤其是小肠黏膜下层(small intestinal submucosa, SIS)处理后的脐带间充质干细胞(umbilical cord mesenchymal stem cells, UC-MSCs)细胞片对伤口愈合的影响。 方法 使用组织块贴壁法从脐带组织中分离、培养原代UC-MSCs。化学脱核法制备脱细胞SIS,通过物理粘附方式将重组人纤维连接蛋白(recombinant human fibronectin, rFN)、SIS和基质胶(Matrigel)固定在聚苯乙烯(polystyrene, PS)细胞培养皿表面。分析PS表面、rFN-PS表面、SIS-PS表面以及Matrigel-PS表面对UC-MSCs形态的影响,RT-PCR法检测基因表达的变化,使用纳米颗粒追踪分析检测细胞外囊泡(extracellular vesicles, EVs)分泌情况的改变。分别用无ECM处理的、rFN处理的、SIS处理的以及Matrigel处理的UC-MSCs细胞片治疗大鼠皮肤全层切除创面,通过计算伤口面积占原始伤口面积的比值进一步验证治疗效果。 结果 与PS表面相比,SIS-PS表面培养的UC-MSCs形态未受影响(P>0.05);RT-PCR检测结果显示,SIS-PS表面培养的UC-MSCs中NANOG同源框(nanog homeobox, NANOG,P=0.041)、SRY-Box 转录因子-2(SRY-box transcription factor 2,SOX-2,P=0.009)、八聚体结合转录因子-4(octamer-binding transcription factor-4,OCT-4,P<0.001)、白介素-10(interleukin-10,IL-10,P=0.049)、吲哚胺2, 3-双加氧酶(indoleamine 2,3-dioxygenase,IDO,P=0.007)和转化生长因子-β(transforming growth factor beta,TGF-β,P=0.046)基因表达增强,而且分泌EVs的能力显著提高(P<0.001)。动物实验结果可见,使用SIS处理的UC-MSCs细胞片治疗组对伤口愈合的促进作用最为显著,第7天伤口占原始伤口面积的比值最低为26.9%±6.1%。 结论 SIS-PS表面培养的UC-MSCs显著提高了免疫抑制和囊泡分泌能力,由此制成的细胞冻干片具有更强的促进伤口愈合的能力。

关键词: 间充质干细胞, 小肠黏膜下层, 伤口愈合, 细胞外囊泡, 胞外基质

Abstract: Objective To explore the effect of extracellular matrix(ECM), especially the small intestinal submucosa(SIS)-treated umbilical cord mesenchymal stem cells(UC-MSCs)sheets on wound healing. Methods Primary UC-MSCs were isolated and cultured from umbilical cord tissues using the tissue block apposition method. Decellularized SIS was obtained using a chemical method, and recombinant human fibronectin(rFN), SIS, and Matrigel were immobilized on the surface of polystyrene(PS)cell culture dishes by physical adhesion. The effects of PS surface, rFN-PS surface, SIS-PS surface, and Matrigel-PS surface on the morphology of UC-MSCs were investigated, and the changes in gene expression were detected by RT-PCR, then changes in the secretion of extracellular vesicles(EVs)were detected using nanoparticle tracking analysis. Rat skin total excision wounds were treated with ECM-free, rFN-treated, SIS-treated, and Matrigel-treated UC-MSCs cell sheets, respectively, and the therapeutic effect was further verified by calculating the ratio of wound area to the original wound area. Results Compared with the PS surface, the morphology of UC-MSCs cultured on the SIS-PS surface was almost unaltered(P>0.05), and RT-PCR assay showed that gene expression of the SIS-PS surface-cultured UC-MSCs was enhanced, such as Nanog homeobox(NANOG, P=0.041), SRY-box transcription factor 2(SOX-2, P=0.009), octamer-binding transcription factor-4(OCT-4, P<0.001), interleukin-10(IL-10, P=0.049), indoleamine 2,3-dioxygenase(IDO, P=0.007), and transforming growth factor beta(TGF-β, P=0.046), meanwhile the ability of the SIS-PS surface-cultured UC-MSCs to secrete EVs was significantly increased(P<0.001). The results of the animal experiments revealed that the lowest percentage of wound to original wound area was 26.9%±6.1% in the group of animals treated with SIS-treated UC-MSCs cell sheets at day 7. Conclusion UC-MSCs cultured on the SIS-PS surface significantly improved immunosuppressive function and EVs secretion ability, and the corresponding cell sheets have a stronger ability to promote wound healing.

Key words: Mesenchymal stem cells, Small intestinal submucosa, Wound healing, Extracellular vesicles, Extracellular matrix

中图分类号: 

  • R318.08
[1] Golebiowska AA, Intravaia JT, Sathe VM, et al. Decellularized extracellular matrix biomaterials for regenerative therapies: advances, challenges and clinical prospects[J]. Bioactive materials, 2024, 32: 98-123. doi:10.1016/j.bioactmat.2023.09.017.
[2] Valdoz JC, Johnson BC, Jacobs DJ, et al. The ECM: to scaffold, or not to scaffold, that is the question[J]. Int J Mol Sci, 2021, 22(23): 12690. doi:10.3390/ijms222312690.
[3] Aazmi A, Zhang D, Mazzaglia C, et al. Biofabrication methods for reconstructing extracellular matrix mimetics[J]. Bioactive materials, 2024, 31: 475-496. doi:10.1016/j.bioactmat.2023.08.018.
[4] Yang P, Lu Y, Gou W, et al. Glycosaminoglycans' ability to promote wound healing: from native living macromolecules to artificial biomaterials[J]. Adv Sci(Weinh), 2024, 11(9): e2305918. doi:10.1002/advs.202305918.
[5] Keshavarz R, Olsen S, Almeida B. Using biomaterials to improve mesenchymal stem cell therapies for chronic, nonhealing wounds[J]. Bioeng Transl Med, 2024, 9(1): e10598. doi:10.1002/btm2.10598.
[6] Al-Azab M, Idiiatullina E, Safi M, et al. Enhancers of mesenchymal stem cell stemness and therapeutic potency[J]. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2023, 162: 114356. doi:10.1016/j.biopha.2023.114356.
[7] 段星祥, 张瑞, 贺燕, 等. 间充质干细胞的细胞治疗策略研究进展[J]. 口腔疾病防治, 2023, 31(10): 745-750. DUAN Xingxiang, ZHANG Rui, HE Yan,et al. Progress on the cell therapy strategy of mesenchymal stem cells[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2023, 31(10): 745-750.
[8] Li H, Dai H, Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: the link with metabolism[J]. J Adv Res, 2023, 45: 15-29. doi:10.1016/j.jare.2022.05.012.
[9] Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy[J]. J Hematol Oncol, 2021, 14(1): 195. doi:10.1186/s13045-021-01208-w.
[10] Ding JY, Chen MJ, Wu LF, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges[J]. Mil Med Res, 2023, 10(1): 36. doi:10.1186/s40779-023-00472-w.
[11] Meng M, Zhang WW, Chen SF, et al. Therapeutic utility of human umbilical cord-derived mesenchymal stem cells-based approaches in pulmonary diseases: recent advancements and prospects[J]. World J Stem Cells, 2024, 16(2): 70-88.
[12] Zhou Z, Xun J, Wu C, et al. Acceleration of burn wound healing by micronized amniotic membrane seeded with umbilical cord-derived mesenchymal stem cells[J]. Mater Today Bio, 2023, 20: 100686. doi:10.1016/j.mtbio.2023.100686.
[13] Singh H, Hassan S, Nabi SU, et al. Multicomponent decellularized extracellular matrix of caprine small intestine submucosa based bioactive hydrogel promoting full-thickness burn wound healing in rabbits[J]. Int J Biol Macromol, 2024, 255: 127810. doi:10.1016/j.ijbiomac.2023.127810.
[14] Hsueh YH, Buddhakosai W, Le PN, et al. Therapeutic effect of induced pluripotent stem cell -derived extracellular vesicles in an in vitro and in vivo osteoarthritis model[J]. J Orthop Translat, 2023, 38: 141-155. doi:10.1016/j.jot.2022.10.004.
[15] Leite ML, De Oliveira Ribeiro RA, Soares DG, et al. Poly(caprolactone)-aligned nanofibers associated with fibronectin-loaded collagen hydrogel as a potent bioactive scaffold for cell-free regenerative endodontics[J]. Int Endod J, 2022, 55(12): 1359-1371.
[16] Zhao P, Li X, Fang Q, et al. Surface modification of small intestine submucosa in tissue engineering[J]. Regen Biomater, 2020, 7(4): 339-348.
[17] Luo L, Liu L, Ding Y, et al. Advances in biomimetic hydrogels for organoid culture[J]. Chem Commun(Camb), 2023, 59(64): 9675-9686.
[18] Floren M, Tan W. Three-dimensional, soft neotissue arrays as high throughput platforms for the interrogation of engineered tissue environments[J]. Biomaterials, 2015, 59: 39-52. doi:10.1016/j.biomaterials.2015.04.036.
[19] Stefanska K, Ozegowska K, Hutchings G, et al. Human whartons jelly-cellular specificity, stemness potency, animal models, and current application in human clinical trials[J]. J Clin Med, 2020, 9(4): 1102. doi:10.3390/jcm9041102.
[20] Cao G, Huang Y, Li K, et al. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair[J]. J Mater Chem B, 2019, 7(33): 5038-5055.
[21] Zhao YZ, Du CC, Xuan Y, et al. Bilirubin/morin self-assembled nanoparticle-engulfed collagen/polyvinyl alcohol hydrogel accelerates chronic diabetic wound healing by modulating inflammation and ameliorating oxidative stress[J]. Int J Biol Macromol, 2024, 261(Pt 1): 129704. doi:10.1016/j.ijbiomac.2024.129704.
[22] Anderson S, Prateeksha P, Das H. Dental pulp-derived stem cells reduce inflammation, accelerate wound healing and mediate M2 polarization of myeloid cells[J]. Biomedicines, 2022, 10(8):1999. doi:10.3390/biomedicines10081999.
[23] Deng Z, Fan T, Xiao C, et al. TGF-beta signaling in health, disease, and therapeutics[J]. Signal Transduct Target Ther, 2024, 9(1): 61. doi:10.1038/s41392-024-01764-w.
[24] Debbi L, Guo S, Safina D, et al. Boosting extracellular vesicle secretion[J]. Biotechnol Adv, 2022, 59: 107983. doi:10.1016/j.biotechadv.2022.107983.
[25] Tian Z, Wang CK, Lin FL, et al. Effect of extracellular matrix proteins on the differentiation of human pluripotent stem cells into mesenchymal stem cells[J]. J Mater Chem B, 2022, 10(30): 5723-5732.
[26] Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208.
[27] Woo J, Ko KW, Cha SG, et al. Comparison of surface functionalization of PLGA composite to immobilize extracellular vesicles[J]. Polymers(Basel), 2021, 13(21): 3643. doi:10.3390/polym13213643.
[28] Zhang J, Qu X, Li J, et al. Tissue sheet engineered using human umbilical cord-derived mesenchymal stem cells improves diabetic wound healing[J]. Int J Mol Sci, 2022, 23(20): 12697. doi:10.3390/ijms232012697.
[1] 赵元元,路军涛,吴小华. 人脐带间充质干细胞外泌体miR-100对多囊卵巢综合征患者颗粒细胞炎症的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 51-58.
[2] 王成,张淑卉,闫娜,孟林林,陈良志,刘庆华. 脐带间充质干细胞治疗中晚期博来霉素诱导小鼠肺间质纤维化的机制[J]. 山东大学学报 (医学版), 2023, 61(10): 17-22.
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[4] 鞠秀丽. 间充质干细胞治疗新型冠状病毒肺炎的潜在机制和研究进展[J]. 山东大学学报 (医学版), 2020, 58(3): 32-37.
[5] 徐焱焱,颜贝,王锐,王红燕. 经血间充质干细胞通过IGF-1信号通路改善小鼠卵巢早衰[J]. 山东大学学报 (医学版), 2020, 58(2): 13-20.
[6] 赵鸿渐,周继军,苏庆亮,赵硕,李玉明. 胃癌间充质干细胞与SGC-7901荷瘤鼠肿瘤进展的相关性[J]. 山东大学学报 (医学版), 2019, 57(9): 69-73.
[7] 张志慧,刘延国,肖丰启,马道新,王秀问. 顺铂对肿瘤间充质干细胞中IL-6表达的调控及p38MAPK通路参与机制[J]. 山东大学学报 (医学版), 2019, 57(3): 1-6.
[8] 侯巧妮,马会明,相丽,何艳桃,徐仙,陈冬梅,张雪玉. 人胎盘间充质干细胞移植对化疗所致卵巢早衰大鼠卵巢功能的影响[J]. 山东大学学报 (医学版), 2019, 57(2): 52-60.
[9] 黄金献,李栋,李聪,时庆,鞠秀丽. 三维和二维培养的脐带间充质干细胞DNA甲基化水平比较[J]. 山东大学学报 (医学版), 2019, 57(11): 1-8.
[10] 黄平,张坤,李芳,黄国宝,延冰,肖东杰,汪运山,刘华. 脐带和脂肪源性间充质干细胞生物学特性比较[J]. 山东大学学报 (医学版), 2018, 56(3): 72-78.
[11] 王凯民,谭娟娟,严志强,李志强. Sirtuin在低氧诱导人脐带间充质干细胞增殖中的作用[J]. 山东大学学报(医学版), 2017, 55(7): 23-30.
[12] 李景媛,宋玲,林松,宋晖. 不同浓度一氧化碳释放分子-3对大鼠骨髓间充质干细胞成骨分化的影响[J]. 山东大学学报(医学版), 2017, 55(7): 31-37.
[13] 宋轲,刘寰,武文亮,刘海春,李尚志,陈允震. 骨髓间充质干细胞、血小板凝胶和体外冲击波联合应用治疗骨不连[J]. 山东大学学报(医学版), 2016, 54(6): 1-6.
[14] 刘宁,吕欣,李栋,黄志伟,刘毅,张乐玲. 人血管生成素1基因慢病毒表达载体的构建及其在脐带间充质干细胞的表达[J]. 山东大学学报(医学版), 2016, 54(12): 1-7.
[15] 王娜,陈乃耀. 脐带间充质干细胞对小胶质细胞增殖及活化的影响[J]. 山东大学学报(医学版), 2016, 54(10): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!